Isotopies of Latin squares

Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.

Created on 2022-04-29.
Last modified on 2023-05-28.

module univalent-combinatorics.isotopies-latin-squares where
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.universe-levels

open import univalent-combinatorics.latin-squares

Idea

An isotopy of latin squares from L to K consists of equivalences of the rows, columns, and symbols preserving the multiplication tables.

Definition

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  (L : Latin-Square l1 l2 l3) (K : Latin-Square l4 l5 l6)
  where

  isotopy-Latin-Square : UU (l1  l2  l3  l4  l5  l6)
  isotopy-Latin-Square =
    Σ ( row-Latin-Square L  row-Latin-Square K)
      ( λ e-row 
        Σ ( column-Latin-Square L  column-Latin-Square K)
          ( λ e-column 
            Σ ( symbol-Latin-Square L  symbol-Latin-Square K)
              ( λ e-symbol 
                ( x : row-Latin-Square L) (y : column-Latin-Square L) 
                Id
                  ( map-equiv e-symbol (mul-Latin-Square L x y))
                  ( mul-Latin-Square K
                    ( map-equiv e-row x)
                    ( map-equiv e-column y)))))

Recent changes