Products of ideals of commutative rings
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2023-11-24.
module commutative-algebra.products-ideals-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.ideals-commutative-rings open import commutative-algebra.ideals-generated-by-subsets-commutative-rings open import commutative-algebra.poset-of-ideals-commutative-rings open import commutative-algebra.products-subsets-commutative-rings open import commutative-algebra.subsets-commutative-rings open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.universe-levels open import lists.lists open import ring-theory.products-ideals-rings
Idea
The product of two ideals
I
and J
in a commutative ring is
the ideal generated all products of elements in I
and J
.
Definition
The universal property of the product of two ideals in a commutative ring
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (I : ideal-Commutative-Ring l2 R) (J : ideal-Commutative-Ring l3 R) where contains-product-ideal-Commutative-Ring : {l4 : Level} (K : ideal-Commutative-Ring l4 R) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) contains-product-ideal-Commutative-Ring = contains-product-ideal-Ring (ring-Commutative-Ring R) I J is-product-ideal-Commutative-Ring : {l4 : Level} (K : ideal-Commutative-Ring l4 R) → contains-product-ideal-Commutative-Ring K → UUω is-product-ideal-Commutative-Ring = is-product-ideal-Ring (ring-Commutative-Ring R) I J
The product of two ideals in a commutative ring
module _ {l1 l2 l3 : Level} (A : Commutative-Ring l1) (I : ideal-Commutative-Ring l2 A) (J : ideal-Commutative-Ring l3 A) where generating-subset-product-ideal-Commutative-Ring : subset-Commutative-Ring (l1 ⊔ l2 ⊔ l3) A generating-subset-product-ideal-Commutative-Ring = generating-subset-product-ideal-Ring (ring-Commutative-Ring A) I J product-ideal-Commutative-Ring : ideal-Commutative-Ring (l1 ⊔ l2 ⊔ l3) A product-ideal-Commutative-Ring = product-ideal-Ring (ring-Commutative-Ring A) I J subset-product-ideal-Commutative-Ring : subset-Commutative-Ring (l1 ⊔ l2 ⊔ l3) A subset-product-ideal-Commutative-Ring = subset-ideal-Commutative-Ring A product-ideal-Commutative-Ring is-in-product-ideal-Commutative-Ring : type-Commutative-Ring A → UU (l1 ⊔ l2 ⊔ l3) is-in-product-ideal-Commutative-Ring = is-in-ideal-Commutative-Ring A product-ideal-Commutative-Ring is-closed-under-eq-product-ideal-Commutative-Ring : {x y : type-Commutative-Ring A} → is-in-product-ideal-Commutative-Ring x → (x = y) → is-in-product-ideal-Commutative-Ring y is-closed-under-eq-product-ideal-Commutative-Ring = is-closed-under-eq-ideal-Commutative-Ring A product-ideal-Commutative-Ring is-closed-under-eq-product-ideal-Commutative-Ring' : {x y : type-Commutative-Ring A} → is-in-product-ideal-Commutative-Ring y → (x = y) → is-in-product-ideal-Commutative-Ring x is-closed-under-eq-product-ideal-Commutative-Ring' = is-closed-under-eq-ideal-Commutative-Ring' A product-ideal-Commutative-Ring contains-product-product-ideal-Commutative-Ring : contains-product-ideal-Commutative-Ring A I J product-ideal-Commutative-Ring contains-product-product-ideal-Commutative-Ring = contains-product-product-ideal-Ring (ring-Commutative-Ring A) I J is-product-product-ideal-Commutative-Ring : is-product-ideal-Commutative-Ring A I J product-ideal-Commutative-Ring contains-product-product-ideal-Commutative-Ring is-product-product-ideal-Commutative-Ring = is-product-product-ideal-Ring (ring-Commutative-Ring A) I J
Properties
The product of ideals preserves inequality of ideals
module _ {l1 l2 l3 l4 l5 : Level} (A : Commutative-Ring l1) (I : ideal-Commutative-Ring l2 A) (J : ideal-Commutative-Ring l3 A) (K : ideal-Commutative-Ring l4 A) (L : ideal-Commutative-Ring l5 A) where preserves-order-product-ideal-Commutative-Ring : leq-ideal-Commutative-Ring A I J → leq-ideal-Commutative-Ring A K L → leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A I K) ( product-ideal-Commutative-Ring A J L) preserves-order-product-ideal-Commutative-Ring p q = is-product-product-ideal-Commutative-Ring A I K ( product-ideal-Commutative-Ring A J L) ( λ x y u v → contains-product-product-ideal-Commutative-Ring A J L _ _ ( p x u) ( q y v)) module _ {l1 l2 l3 l4 : Level} (A : Commutative-Ring l1) (I : ideal-Commutative-Ring l2 A) (J : ideal-Commutative-Ring l3 A) (K : ideal-Commutative-Ring l4 A) where preserves-order-left-product-ideal-Commutative-Ring : leq-ideal-Commutative-Ring A I J → leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A I K) ( product-ideal-Commutative-Ring A J K) preserves-order-left-product-ideal-Commutative-Ring p = preserves-order-product-ideal-Commutative-Ring A I J K K p ( refl-leq-ideal-Commutative-Ring A K) preserves-order-right-product-ideal-Commutative-Ring : leq-ideal-Commutative-Ring A J K → leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A I J) ( product-ideal-Commutative-Ring A I K) preserves-order-right-product-ideal-Commutative-Ring = preserves-order-product-ideal-Commutative-Ring A I I J K ( refl-leq-ideal-Commutative-Ring A I)
The ideal generated by a product of two subsets is the product of the ideals generated by the two subsets
In other words, we will show that (S)(T) = (ST)
.
module _ {l1 l2 l3 : Level} (A : Commutative-Ring l1) (S : subset-Commutative-Ring l2 A) (T : subset-Commutative-Ring l3 A) where abstract forward-inclusion-preserves-product-ideal-subset-Commutative-Ring : leq-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A T)) forward-inclusion-preserves-product-ideal-subset-Commutative-Ring = is-ideal-generated-by-subset-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A T)) ( λ x H → apply-universal-property-trunc-Prop H ( subset-product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A T) ( x)) ( λ where ( s , t , refl) → contains-product-product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A T) ( pr1 s) ( pr1 t) ( contains-subset-ideal-subset-Commutative-Ring A S ( pr1 s) ( pr2 s)) ( contains-subset-ideal-subset-Commutative-Ring A T ( pr1 t) ( pr2 t)))) left-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring : {x s y : type-Commutative-Ring A} → is-in-subset-Commutative-Ring A S s → (l : formal-combination-subset-Commutative-Ring A T) → is-in-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( mul-Commutative-Ring A ( mul-Commutative-Ring A (mul-Commutative-Ring A x s) y) ( ev-formal-combination-subset-Commutative-Ring A T l)) left-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring H nil = is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( contains-zero-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( right-zero-law-mul-Commutative-Ring A _) left-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring {x} {s} {y} Hs ( cons (u , (t , Ht) , v) l) = is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( is-closed-under-addition-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( is-closed-under-right-multiplication-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( _) ( _) ( is-closed-under-left-multiplication-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( mul-Commutative-Ring A x u) ( mul-Commutative-Ring A s t) ( contains-subset-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( mul-Commutative-Ring A s t) ( unit-trunc-Prop (((s , Hs) , (t , Ht) , refl)))))) ( ( interchange-mul-mul-Commutative-Ring A _ _ _ _) ∙ ( ap ( mul-Commutative-Ring' A _) ( interchange-mul-mul-Commutative-Ring A _ _ _ _)))) ( left-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring Hs l)) ( left-distributive-mul-add-Commutative-Ring A _ _ _) right-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring : {u t v : type-Commutative-Ring A} → is-in-subset-Commutative-Ring A T t → (k : formal-combination-subset-Commutative-Ring A S) → is-in-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( mul-Commutative-Ring A ( ev-formal-combination-subset-Commutative-Ring A S k) ( mul-Commutative-Ring A (mul-Commutative-Ring A u t) v)) right-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring Ht nil = is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( contains-zero-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( left-zero-law-mul-Commutative-Ring A _) right-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring {u} {t} {v} Ht ( cons (x , (s , Hs) , y) k) = is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( is-closed-under-addition-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( is-closed-under-right-multiplication-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( _) ( _) ( is-closed-under-left-multiplication-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( mul-Commutative-Ring A x u) ( mul-Commutative-Ring A s t) ( contains-subset-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( mul-Commutative-Ring A s t) ( unit-trunc-Prop (((s , Hs) , (t , Ht) , refl)))))) ( ( interchange-mul-mul-Commutative-Ring A _ _ _ _) ∙ ( ap ( mul-Commutative-Ring' A _) ( interchange-mul-mul-Commutative-Ring A _ _ _ _)))) ( right-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring Ht k)) ( right-distributive-mul-add-Commutative-Ring A _ _ _) backward-inclusion-preserves-product-ideal-subset-Commutative-Ring' : ( s t : type-Commutative-Ring A) ( k : subset-ideal-subset-Commutative-Ring' A S s) ( l : subset-ideal-subset-Commutative-Ring' A T t) → is-in-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( mul-Commutative-Ring A s t) backward-inclusion-preserves-product-ideal-subset-Commutative-Ring' ._ t ( nil , refl) l = is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( contains-zero-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( left-zero-law-mul-Commutative-Ring A t) backward-inclusion-preserves-product-ideal-subset-Commutative-Ring' ._ ._ ( cons x k , refl) (nil , refl) = is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( contains-zero-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( right-zero-law-mul-Commutative-Ring A _) backward-inclusion-preserves-product-ideal-subset-Commutative-Ring' ._ ._ ( cons (x , (s , Hs) , y) k , refl) (cons (u , (t , Ht) , v) l , refl) = is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( is-closed-under-addition-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( is-closed-under-addition-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( is-closed-under-eq-ideal-subset-Commutative-Ring' A ( product-subset-Commutative-Ring A S T) ( is-closed-under-right-multiplication-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( _) ( _) ( is-closed-under-left-multiplication-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T)) ( mul-Commutative-Ring A x u) ( mul-Commutative-Ring A s t) ( contains-subset-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( mul-Commutative-Ring A s t) ( unit-trunc-Prop (((s , Hs) , (t , Ht) , refl)))))) ( ( interchange-mul-mul-Commutative-Ring A _ _ _ _) ∙ ( ap ( mul-Commutative-Ring' A _) ( interchange-mul-mul-Commutative-Ring A _ _ _ _)))) ( left-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring Hs l)) ( is-closed-under-addition-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( right-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring Ht k) ( backward-inclusion-preserves-product-ideal-subset-Commutative-Ring' ( _) ( _) ( k , refl) ( l , refl)))) ( bidistributive-mul-add-Commutative-Ring A _ _ _ _) backward-inclusion-preserves-product-ideal-subset-Commutative-Ring : leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A T)) ( ideal-subset-Commutative-Ring A (product-subset-Commutative-Ring A S T)) backward-inclusion-preserves-product-ideal-subset-Commutative-Ring = is-product-product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A T) ( ideal-subset-Commutative-Ring A (product-subset-Commutative-Ring A S T)) ( λ s t p q → apply-twice-universal-property-trunc-Prop p q ( subset-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S T) ( mul-Commutative-Ring A s t)) ( backward-inclusion-preserves-product-ideal-subset-Commutative-Ring' s t)) preserves-product-ideal-subset-Commutative-Ring : ideal-subset-Commutative-Ring A (product-subset-Commutative-Ring A S T) = product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A T) preserves-product-ideal-subset-Commutative-Ring = eq-has-same-elements-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A (product-subset-Commutative-Ring A S T)) ( product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A T)) ( λ x → forward-inclusion-preserves-product-ideal-subset-Commutative-Ring x , backward-inclusion-preserves-product-ideal-subset-Commutative-Ring x)
(SI) = (S)I
module _ {l1 l2 l3 : Level} (A : Commutative-Ring l1) (S : subset-Commutative-Ring l2 A) (I : ideal-Commutative-Ring l3 A) where forward-inclusion-left-preserves-product-ideal-subset-Commutative-Ring : leq-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S ( subset-ideal-Commutative-Ring A I))) ( product-ideal-Commutative-Ring A (ideal-subset-Commutative-Ring A S) I) forward-inclusion-left-preserves-product-ideal-subset-Commutative-Ring = transitive-leq-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S ( subset-ideal-Commutative-Ring A I))) ( product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A (subset-ideal-Commutative-Ring A I))) ( product-ideal-Commutative-Ring A (ideal-subset-Commutative-Ring A S) I) ( preserves-order-right-product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A (subset-ideal-Commutative-Ring A I)) ( I) ( forward-inclusion-idempotent-ideal-subset-Commutative-Ring A I)) ( forward-inclusion-preserves-product-ideal-subset-Commutative-Ring A S ( subset-ideal-Commutative-Ring A I)) backward-inclusion-left-preserves-product-ideal-subset-Commutative-Ring : leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A (ideal-subset-Commutative-Ring A S) I) ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S ( subset-ideal-Commutative-Ring A I))) backward-inclusion-left-preserves-product-ideal-subset-Commutative-Ring = transitive-leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A (ideal-subset-Commutative-Ring A S) I) ( product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( ideal-subset-Commutative-Ring A (subset-ideal-Commutative-Ring A I))) ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S ( subset-ideal-Commutative-Ring A I))) ( backward-inclusion-preserves-product-ideal-subset-Commutative-Ring A S ( subset-ideal-Commutative-Ring A I)) ( preserves-order-right-product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( I) ( ideal-subset-Commutative-Ring A (subset-ideal-Commutative-Ring A I)) ( backward-inclusion-idempotent-ideal-subset-Commutative-Ring A I)) left-preserves-product-ideal-subset-Commutative-Ring : ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S ( subset-ideal-Commutative-Ring A I)) = product-ideal-Commutative-Ring A (ideal-subset-Commutative-Ring A S) I left-preserves-product-ideal-subset-Commutative-Ring = eq-has-same-elements-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A S ( subset-ideal-Commutative-Ring A I))) ( product-ideal-Commutative-Ring A (ideal-subset-Commutative-Ring A S) I) ( λ x → forward-inclusion-left-preserves-product-ideal-subset-Commutative-Ring x , backward-inclusion-left-preserves-product-ideal-subset-Commutative-Ring x)
(IT) = I(T)
module _ {l1 l2 l3 : Level} (A : Commutative-Ring l1) (I : ideal-Commutative-Ring l2 A) (T : subset-Commutative-Ring l3 A) where forward-inclusion-right-preserves-product-ideal-subset-Commutative-Ring : leq-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( T))) ( product-ideal-Commutative-Ring A I (ideal-subset-Commutative-Ring A T)) forward-inclusion-right-preserves-product-ideal-subset-Commutative-Ring = transitive-leq-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( T))) ( product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A (subset-ideal-Commutative-Ring A I)) ( ideal-subset-Commutative-Ring A T)) ( product-ideal-Commutative-Ring A I (ideal-subset-Commutative-Ring A T)) ( preserves-order-left-product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A (subset-ideal-Commutative-Ring A I)) ( I) ( ideal-subset-Commutative-Ring A T) ( forward-inclusion-idempotent-ideal-subset-Commutative-Ring A I)) ( forward-inclusion-preserves-product-ideal-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( T)) backward-inclusion-right-preserves-product-ideal-subset-Commutative-Ring : leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A I (ideal-subset-Commutative-Ring A T)) ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( T))) backward-inclusion-right-preserves-product-ideal-subset-Commutative-Ring = transitive-leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A I (ideal-subset-Commutative-Ring A T)) ( product-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A (subset-ideal-Commutative-Ring A I)) ( ideal-subset-Commutative-Ring A T)) ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( T))) ( backward-inclusion-preserves-product-ideal-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( T)) ( preserves-order-left-product-ideal-Commutative-Ring A ( I) ( ideal-subset-Commutative-Ring A (subset-ideal-Commutative-Ring A I)) ( ideal-subset-Commutative-Ring A T) ( backward-inclusion-idempotent-ideal-subset-Commutative-Ring A I)) right-preserves-product-ideal-subset-Commutative-Ring : ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( T)) = product-ideal-Commutative-Ring A I (ideal-subset-Commutative-Ring A T) right-preserves-product-ideal-subset-Commutative-Ring = eq-has-same-elements-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( T))) ( product-ideal-Commutative-Ring A I (ideal-subset-Commutative-Ring A T)) ( λ x → forward-inclusion-right-preserves-product-ideal-subset-Commutative-Ring x , backward-inclusion-right-preserves-product-ideal-subset-Commutative-Ring x)
The product of ideals is assiciative
Given three ideals I
, J
, and K
, we have that
(IJ)K = ((generating-subset-product-ideal-Commutative-Ring I J)K)
= (I(generating-subset-product-ideal-Commutative-Ring J K))
= I(JK).
module _ {l1 l2 l3 l4 : Level} (A : Commutative-Ring l1) (I : ideal-Commutative-Ring l2 A) (J : ideal-Commutative-Ring l3 A) (K : ideal-Commutative-Ring l4 A) where forward-inclusion-associative-product-ideal-Commutative-Ring : leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A I J) ( K)) ( product-ideal-Commutative-Ring A ( I) ( product-ideal-Commutative-Ring A J K)) forward-inclusion-associative-product-ideal-Commutative-Ring x H = forward-inclusion-right-preserves-product-ideal-subset-Commutative-Ring A I ( generating-subset-product-ideal-Commutative-Ring A J K) ( x) ( preserves-order-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( subset-ideal-Commutative-Ring A J)) ( subset-ideal-Commutative-Ring A K)) ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A J) ( subset-ideal-Commutative-Ring A K))) ( forward-inclusion-associative-product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( subset-ideal-Commutative-Ring A J) ( subset-ideal-Commutative-Ring A K)) ( x) ( backward-inclusion-left-preserves-product-ideal-subset-Commutative-Ring ( A) ( generating-subset-product-ideal-Commutative-Ring A I J) ( K) ( x) ( H))) backward-inclusion-associative-product-ideal-Commutative-Ring : leq-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A I ( product-ideal-Commutative-Ring A J K)) ( product-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A I J) ( K)) backward-inclusion-associative-product-ideal-Commutative-Ring x H = forward-inclusion-left-preserves-product-ideal-subset-Commutative-Ring A ( generating-subset-product-ideal-Commutative-Ring A I J) ( K) ( x) ( preserves-order-ideal-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A J) ( subset-ideal-Commutative-Ring A K))) ( product-subset-Commutative-Ring A ( product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( subset-ideal-Commutative-Ring A J)) ( subset-ideal-Commutative-Ring A K)) ( backward-inclusion-associative-product-subset-Commutative-Ring A ( subset-ideal-Commutative-Ring A I) ( subset-ideal-Commutative-Ring A J) ( subset-ideal-Commutative-Ring A K)) ( x) ( backward-inclusion-right-preserves-product-ideal-subset-Commutative-Ring ( A) ( I) ( generating-subset-product-ideal-Commutative-Ring A J K) ( x) ( H))) associative-product-ideal-Commutative-Ring : product-ideal-Commutative-Ring A (product-ideal-Commutative-Ring A I J) K = product-ideal-Commutative-Ring A I (product-ideal-Commutative-Ring A J K) associative-product-ideal-Commutative-Ring = eq-has-same-elements-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A ( product-ideal-Commutative-Ring A I J) ( K)) ( product-ideal-Commutative-Ring A I ( product-ideal-Commutative-Ring A J K)) ( λ x → forward-inclusion-associative-product-ideal-Commutative-Ring x , backward-inclusion-associative-product-ideal-Commutative-Ring x)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Refactor library to use
λ where
(#809). - 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).