Dependent products of subtypes
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-30.
module foundation.dependent-products-subtypes where
Imports
open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels
Idea
Given an indexing type I
, a type Aᵢ
for each i : I
, and a
subtype Sᵢ ⊆ Aᵢ
for each i : I
, a function
f : (i : I) → Aᵢ
is in the
dependent product¶ of
the subtypes S
if for each i
, f i ∈ Sᵢ
.
Definition
Π-subtype : {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} → ((i : I) → subtype l3 (A i)) → subtype (l1 ⊔ l3) ((i : I) → A i) Π-subtype {I = I} S f = Π-Prop I (λ i → S i (f i))
Recent changes
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).