Decidable subgroups of groups
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Maša Žaucer, Julian KG, fernabnor, Gregor Perčič and louismntnu.
Created on 2022-08-23.
Last modified on 2024-04-20.
module group-theory.decidable-subgroups where
Imports
open import foundation.binary-relations open import foundation.decidable-subtypes open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalence-relations open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtype-identity-principle open import foundation.subtypes open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.semigroups open import group-theory.subgroups open import group-theory.subsets-groups
Idea
A decidable subgroup of a group G
is a subgroup of G
defined by a decidable
predicate on the type of elements of G
.
Definitions
Decidable subsets of groups
decidable-subset-Group : (l : Level) {l1 : Level} (G : Group l1) → UU (lsuc l ⊔ l1) decidable-subset-Group l G = decidable-subtype l (type-Group G) is-set-decidable-subset-Group : (l : Level) {l1 : Level} (G : Group l1) → is-set (decidable-subset-Group l G) is-set-decidable-subset-Group l G = is-set-decidable-subtype module _ {l1 l2 : Level} (G : Group l1) (P : decidable-subset-Group l2 G) where subset-decidable-subset-Group : subset-Group l2 G subset-decidable-subset-Group = subtype-decidable-subtype P
Decidable subgroups of groups
module _ {l1 l2 : Level} (G : Group l1) (P : decidable-subset-Group l2 G) where contains-unit-prop-decidable-subset-Group : Prop l2 contains-unit-prop-decidable-subset-Group = contains-unit-prop-subset-Group G (subset-decidable-subset-Group G P) contains-unit-decidable-subset-Group : UU l2 contains-unit-decidable-subset-Group = contains-unit-subset-Group G (subset-decidable-subset-Group G P) is-prop-contains-unit-decidable-subset-Group : is-prop contains-unit-decidable-subset-Group is-prop-contains-unit-decidable-subset-Group = is-prop-contains-unit-subset-Group G (subset-decidable-subset-Group G P) is-closed-under-multiplication-prop-decidable-subset-Group : Prop (l1 ⊔ l2) is-closed-under-multiplication-prop-decidable-subset-Group = is-closed-under-multiplication-prop-subset-Group G ( subset-decidable-subset-Group G P) is-closed-under-multiplication-decidable-subset-Group : UU (l1 ⊔ l2) is-closed-under-multiplication-decidable-subset-Group = is-closed-under-multiplication-subset-Group G ( subset-decidable-subset-Group G P) is-prop-is-closed-under-multiplication-decidable-subset-Group : is-prop is-closed-under-multiplication-decidable-subset-Group is-prop-is-closed-under-multiplication-decidable-subset-Group = is-prop-is-closed-under-multiplication-subset-Group G ( subset-decidable-subset-Group G P) is-closed-under-inverses-prop-decidable-subset-Group : Prop (l1 ⊔ l2) is-closed-under-inverses-prop-decidable-subset-Group = is-closed-under-inverses-prop-subset-Group G ( subset-decidable-subset-Group G P) is-closed-under-inverses-decidable-subset-Group : UU (l1 ⊔ l2) is-closed-under-inverses-decidable-subset-Group = is-closed-under-inverses-subset-Group G (subset-decidable-subset-Group G P) is-prop-is-closed-under-inverses-decidable-subset-Group : is-prop is-closed-under-inverses-decidable-subset-Group is-prop-is-closed-under-inverses-decidable-subset-Group = is-prop-is-closed-under-inverses-subset-Group G ( subset-decidable-subset-Group G P) is-subgroup-prop-decidable-subset-Group : Prop (l1 ⊔ l2) is-subgroup-prop-decidable-subset-Group = is-subgroup-prop-subset-Group G (subset-decidable-subset-Group G P) is-subgroup-decidable-subset-Group : UU (l1 ⊔ l2) is-subgroup-decidable-subset-Group = is-subgroup-subset-Group G (subset-decidable-subset-Group G P) is-prop-is-subgroup-decidable-subset-Group : is-prop is-subgroup-decidable-subset-Group is-prop-is-subgroup-decidable-subset-Group = is-prop-is-subgroup-subset-Group G (subset-decidable-subset-Group G P) Decidable-Subgroup : (l : Level) {l1 : Level} (G : Group l1) → UU (lsuc l ⊔ l1) Decidable-Subgroup l G = type-subtype (is-subgroup-prop-decidable-subset-Group {l2 = l} G) module _ {l1 l2 : Level} (G : Group l1) (H : Decidable-Subgroup l2 G) where decidable-subset-Decidable-Subgroup : decidable-subset-Group l2 G decidable-subset-Decidable-Subgroup = inclusion-subtype (is-subgroup-prop-decidable-subset-Group G) H subset-Decidable-Subgroup : subset-Group l2 G subset-Decidable-Subgroup = subtype-decidable-subtype decidable-subset-Decidable-Subgroup is-subgroup-subset-Decidable-Subgroup : is-subgroup-subset-Group G subset-Decidable-Subgroup is-subgroup-subset-Decidable-Subgroup = pr2 H subgroup-Decidable-Subgroup : Subgroup l2 G pr1 subgroup-Decidable-Subgroup = subset-Decidable-Subgroup pr2 subgroup-Decidable-Subgroup = is-subgroup-subset-Decidable-Subgroup type-Decidable-Subgroup : UU (l1 ⊔ l2) type-Decidable-Subgroup = type-Subgroup G subgroup-Decidable-Subgroup inclusion-Decidable-Subgroup : type-Decidable-Subgroup → type-Group G inclusion-Decidable-Subgroup = inclusion-Subgroup G subgroup-Decidable-Subgroup is-emb-inclusion-Decidable-Subgroup : is-emb inclusion-Decidable-Subgroup is-emb-inclusion-Decidable-Subgroup = is-emb-inclusion-Subgroup G subgroup-Decidable-Subgroup emb-inclusion-Decidable-Subgroup : type-Decidable-Subgroup ↪ type-Group G emb-inclusion-Decidable-Subgroup = emb-inclusion-Subgroup G subgroup-Decidable-Subgroup is-in-Decidable-Subgroup : type-Group G → UU l2 is-in-Decidable-Subgroup = is-in-Subgroup G subgroup-Decidable-Subgroup is-in-subgroup-inclusion-Decidable-Subgroup : (x : type-Decidable-Subgroup) → is-in-Decidable-Subgroup (inclusion-Decidable-Subgroup x) is-in-subgroup-inclusion-Decidable-Subgroup = is-in-subgroup-inclusion-Subgroup G subgroup-Decidable-Subgroup is-prop-is-in-Decidable-Subgroup : (x : type-Group G) → is-prop (is-in-Decidable-Subgroup x) is-prop-is-in-Decidable-Subgroup = is-prop-is-in-Subgroup G subgroup-Decidable-Subgroup is-subgroup-Decidable-Subgroup : is-subgroup-decidable-subset-Group G decidable-subset-Decidable-Subgroup is-subgroup-Decidable-Subgroup = is-subgroup-Subgroup G subgroup-Decidable-Subgroup contains-unit-Decidable-Subgroup : contains-unit-decidable-subset-Group G decidable-subset-Decidable-Subgroup contains-unit-Decidable-Subgroup = contains-unit-Subgroup G subgroup-Decidable-Subgroup is-closed-under-multiplication-Decidable-Subgroup : is-closed-under-multiplication-decidable-subset-Group G decidable-subset-Decidable-Subgroup is-closed-under-multiplication-Decidable-Subgroup = is-closed-under-multiplication-Subgroup G subgroup-Decidable-Subgroup is-closed-under-inverses-Decidable-Subgroup : is-closed-under-inverses-decidable-subset-Group G decidable-subset-Decidable-Subgroup is-closed-under-inverses-Decidable-Subgroup = is-closed-under-inverses-Subgroup G subgroup-Decidable-Subgroup is-emb-decidable-subset-Decidable-Subgroup : {l1 l2 : Level} (G : Group l1) → is-emb (decidable-subset-Decidable-Subgroup {l2 = l2} G) is-emb-decidable-subset-Decidable-Subgroup G = is-emb-inclusion-subtype (is-subgroup-prop-decidable-subset-Group G)
The underlying group of a decidable subgroup
module _ {l1 l2 : Level} (G : Group l1) (H : Decidable-Subgroup l2 G) where type-group-Decidable-Subgroup : UU (l1 ⊔ l2) type-group-Decidable-Subgroup = type-group-Subgroup G (subgroup-Decidable-Subgroup G H) map-inclusion-Decidable-Subgroup : type-group-Decidable-Subgroup → type-Group G map-inclusion-Decidable-Subgroup = map-inclusion-Subgroup G (subgroup-Decidable-Subgroup G H) eq-decidable-subgroup-eq-group : {x y : type-group-Decidable-Subgroup} → ( map-inclusion-Decidable-Subgroup x = map-inclusion-Decidable-Subgroup y) → x = y eq-decidable-subgroup-eq-group = eq-subgroup-eq-group G (subgroup-Decidable-Subgroup G H) set-group-Decidable-Subgroup : Set (l1 ⊔ l2) set-group-Decidable-Subgroup = set-group-Subgroup G (subgroup-Decidable-Subgroup G H) mul-Decidable-Subgroup : (x y : type-group-Decidable-Subgroup) → type-group-Decidable-Subgroup mul-Decidable-Subgroup = mul-Subgroup G (subgroup-Decidable-Subgroup G H) associative-mul-Decidable-Subgroup : (x y z : type-group-Decidable-Subgroup) → Id ( mul-Decidable-Subgroup (mul-Decidable-Subgroup x y) z) ( mul-Decidable-Subgroup x (mul-Decidable-Subgroup y z)) associative-mul-Decidable-Subgroup = associative-mul-Subgroup G (subgroup-Decidable-Subgroup G H) unit-Decidable-Subgroup : type-group-Decidable-Subgroup unit-Decidable-Subgroup = unit-Subgroup G (subgroup-Decidable-Subgroup G H) left-unit-law-mul-Decidable-Subgroup : (x : type-group-Decidable-Subgroup) → Id (mul-Decidable-Subgroup unit-Decidable-Subgroup x) x left-unit-law-mul-Decidable-Subgroup = left-unit-law-mul-Subgroup G (subgroup-Decidable-Subgroup G H) right-unit-law-mul-Decidable-Subgroup : (x : type-group-Decidable-Subgroup) → Id (mul-Decidable-Subgroup x unit-Decidable-Subgroup) x right-unit-law-mul-Decidable-Subgroup = right-unit-law-mul-Subgroup G (subgroup-Decidable-Subgroup G H) inv-Decidable-Subgroup : type-group-Decidable-Subgroup → type-group-Decidable-Subgroup inv-Decidable-Subgroup = inv-Subgroup G (subgroup-Decidable-Subgroup G H) left-inverse-law-mul-Decidable-Subgroup : ( x : type-group-Decidable-Subgroup) → Id ( mul-Decidable-Subgroup (inv-Decidable-Subgroup x) x) ( unit-Decidable-Subgroup) left-inverse-law-mul-Decidable-Subgroup = left-inverse-law-mul-Subgroup G (subgroup-Decidable-Subgroup G H) right-inverse-law-mul-Decidable-Subgroup : (x : type-group-Decidable-Subgroup) → Id ( mul-Decidable-Subgroup x (inv-Decidable-Subgroup x)) ( unit-Decidable-Subgroup) right-inverse-law-mul-Decidable-Subgroup = right-inverse-law-mul-Subgroup G (subgroup-Decidable-Subgroup G H) semigroup-Decidable-Subgroup : Semigroup (l1 ⊔ l2) semigroup-Decidable-Subgroup = semigroup-Subgroup G (subgroup-Decidable-Subgroup G H) group-Decidable-Subgroup : Group (l1 ⊔ l2) group-Decidable-Subgroup = group-Subgroup G (subgroup-Decidable-Subgroup G H)
The inclusion of the underlying group of a subgroup into the ambient group
module _ {l1 l2 : Level} (G : Group l1) (H : Decidable-Subgroup l2 G) where preserves-mul-inclusion-Decidable-Subgroup : preserves-mul-Group ( group-Decidable-Subgroup G H) ( G) ( map-inclusion-Decidable-Subgroup G H) preserves-mul-inclusion-Decidable-Subgroup {x} {y} = preserves-mul-inclusion-Subgroup G (subgroup-Decidable-Subgroup G H) {x} {y} preserves-unit-inclusion-Decidable-Subgroup : preserves-unit-Group ( group-Decidable-Subgroup G H) ( G) ( map-inclusion-Decidable-Subgroup G H) preserves-unit-inclusion-Decidable-Subgroup = preserves-unit-inclusion-Subgroup G (subgroup-Decidable-Subgroup G H) preserves-inverses-inclusion-Decidable-Subgroup : preserves-inverses-Group ( group-Decidable-Subgroup G H) ( G) ( map-inclusion-Decidable-Subgroup G H) preserves-inverses-inclusion-Decidable-Subgroup {x} = preserves-inverses-inclusion-Subgroup G ( subgroup-Decidable-Subgroup G H) { x} hom-inclusion-Decidable-Subgroup : hom-Group (group-Decidable-Subgroup G H) G hom-inclusion-Decidable-Subgroup = hom-inclusion-Subgroup G (subgroup-Decidable-Subgroup G H)
Properties
Extensionality of the type of all subgroups
module _ {l1 l2 : Level} (G : Group l1) (H : Decidable-Subgroup l2 G) where has-same-elements-Decidable-Subgroup : {l3 : Level} → Decidable-Subgroup l3 G → UU (l1 ⊔ l2 ⊔ l3) has-same-elements-Decidable-Subgroup K = has-same-elements-decidable-subtype ( decidable-subset-Decidable-Subgroup G H) ( decidable-subset-Decidable-Subgroup G K) extensionality-Decidable-Subgroup : (K : Decidable-Subgroup l2 G) → (H = K) ≃ has-same-elements-Decidable-Subgroup K extensionality-Decidable-Subgroup = extensionality-type-subtype ( is-subgroup-prop-decidable-subset-Group G) ( is-subgroup-Decidable-Subgroup G H) ( λ x → pair id id) ( extensionality-decidable-subtype ( decidable-subset-Decidable-Subgroup G H))
Every subgroup induces two equivalence relations
The equivalence relation where x ~ y
if and only if there exists u : H
such that xu = y
module _ {l1 l2 : Level} (G : Group l1) (H : Decidable-Subgroup l2 G) where right-sim-Decidable-Subgroup : (x y : type-Group G) → UU l2 right-sim-Decidable-Subgroup = right-sim-Subgroup G (subgroup-Decidable-Subgroup G H) is-prop-right-sim-Decidable-Subgroup : (x y : type-Group G) → is-prop (right-sim-Decidable-Subgroup x y) is-prop-right-sim-Decidable-Subgroup = is-prop-right-sim-Subgroup G (subgroup-Decidable-Subgroup G H) prop-right-equivalence-relation-Decidable-Subgroup : (x y : type-Group G) → Prop l2 prop-right-equivalence-relation-Decidable-Subgroup = prop-right-equivalence-relation-Subgroup G (subgroup-Decidable-Subgroup G H) refl-right-sim-Decidable-Subgroup : is-reflexive right-sim-Decidable-Subgroup refl-right-sim-Decidable-Subgroup = refl-right-sim-Subgroup G (subgroup-Decidable-Subgroup G H) symmetric-right-sim-Decidable-Subgroup : is-symmetric right-sim-Decidable-Subgroup symmetric-right-sim-Decidable-Subgroup = symmetric-right-sim-Subgroup G (subgroup-Decidable-Subgroup G H) transitive-right-sim-Decidable-Subgroup : is-transitive right-sim-Decidable-Subgroup transitive-right-sim-Decidable-Subgroup = transitive-right-sim-Subgroup G (subgroup-Decidable-Subgroup G H) right-equivalence-relation-Decidable-Subgroup : equivalence-relation l2 (type-Group G) right-equivalence-relation-Decidable-Subgroup = right-equivalence-relation-Subgroup G (subgroup-Decidable-Subgroup G H)
The equivalence relation where x ~ y
if and only if there exists u : H
such that ux = y
module _ {l1 l2 : Level} (G : Group l1) (H : Decidable-Subgroup l2 G) where left-sim-Decidable-Subgroup : (x y : type-Group G) → UU l2 left-sim-Decidable-Subgroup = left-sim-Subgroup G (subgroup-Decidable-Subgroup G H) is-prop-left-sim-Decidable-Subgroup : (x y : type-Group G) → is-prop (left-sim-Decidable-Subgroup x y) is-prop-left-sim-Decidable-Subgroup = is-prop-left-sim-Subgroup G (subgroup-Decidable-Subgroup G H) prop-left-equivalence-relation-Decidable-Subgroup : (x y : type-Group G) → Prop l2 prop-left-equivalence-relation-Decidable-Subgroup = prop-left-equivalence-relation-Subgroup G (subgroup-Decidable-Subgroup G H) refl-left-sim-Decidable-Subgroup : is-reflexive left-sim-Decidable-Subgroup refl-left-sim-Decidable-Subgroup = refl-left-sim-Subgroup G (subgroup-Decidable-Subgroup G H) symmetric-left-sim-Decidable-Subgroup : is-symmetric left-sim-Decidable-Subgroup symmetric-left-sim-Decidable-Subgroup = symmetric-left-sim-Subgroup G (subgroup-Decidable-Subgroup G H) transitive-left-sim-Decidable-Subgroup : is-transitive left-sim-Decidable-Subgroup transitive-left-sim-Decidable-Subgroup = transitive-left-sim-Subgroup G (subgroup-Decidable-Subgroup G H) left-equivalence-relation-Decidable-Subgroup : equivalence-relation l2 (type-Group G) left-equivalence-relation-Decidable-Subgroup = left-equivalence-relation-Subgroup G (subgroup-Decidable-Subgroup G H)
Recent changes
- 2024-04-20. Fredrik Bakke. chore: Remove redundant parentheses in universe level expressions (#1125).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-06-28. Fredrik Bakke. Localizations and other things (#655).