Rational commutative monoids
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-13.
Last modified on 2023-09-13.
module group-theory.rational-commutative-monoids where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.monoids open import group-theory.powers-of-elements-commutative-monoids
Idea
A rational commutative monoid is a
commutative monoid (M,0,+)
in which the
map x ↦ nx
is invertible for every
natural number n > 0
. This
condition implies that we can invert the natural numbers in M
, which are the
elements of the form n1
in M
.
Note: Since we usually write commutative monoids multiplicatively, the condition
that a commutative monoid is rational is that the map x ↦ xⁿ
is invertible for
every natural number n > 0
. However, for rational commutative monoids we will
write the binary operation additively.
Definition
The predicate of being a rational commutative monoid
module _ {l : Level} (M : Commutative-Monoid l) where is-rational-prop-Commutative-Monoid : Prop l is-rational-prop-Commutative-Monoid = Π-Prop ℕ ( λ n → is-equiv-Prop (power-Commutative-Monoid M (succ-ℕ n))) is-rational-Commutative-Monoid : UU l is-rational-Commutative-Monoid = type-Prop is-rational-prop-Commutative-Monoid is-prop-is-rational-Commutative-Monoid : is-prop is-rational-Commutative-Monoid is-prop-is-rational-Commutative-Monoid = is-prop-type-Prop is-rational-prop-Commutative-Monoid
Rational commutative monoids
Rational-Commutative-Monoid : (l : Level) → UU (lsuc l) Rational-Commutative-Monoid l = Σ (Commutative-Monoid l) is-rational-Commutative-Monoid module _ {l : Level} (M : Rational-Commutative-Monoid l) where commutative-monoid-Rational-Commutative-Monoid : Commutative-Monoid l commutative-monoid-Rational-Commutative-Monoid = pr1 M monoid-Rational-Commutative-Monoid : Monoid l monoid-Rational-Commutative-Monoid = monoid-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid type-Rational-Commutative-Monoid : UU l type-Rational-Commutative-Monoid = type-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid add-Rational-Commutative-Monoid : (x y : type-Rational-Commutative-Monoid) → type-Rational-Commutative-Monoid add-Rational-Commutative-Monoid = mul-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid zero-Rational-Commutative-Monoid : type-Rational-Commutative-Monoid zero-Rational-Commutative-Monoid = unit-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid associative-add-Rational-Commutative-Monoid : (x y z : type-Rational-Commutative-Monoid) → add-Rational-Commutative-Monoid ( add-Rational-Commutative-Monoid x y) ( z) = add-Rational-Commutative-Monoid ( x) ( add-Rational-Commutative-Monoid y z) associative-add-Rational-Commutative-Monoid = associative-mul-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid left-unit-law-add-Rational-Commutative-Monoid : (x : type-Rational-Commutative-Monoid) → add-Rational-Commutative-Monoid zero-Rational-Commutative-Monoid x = x left-unit-law-add-Rational-Commutative-Monoid = left-unit-law-mul-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid right-unit-law-add-Rational-Commutative-Monoid : (x : type-Rational-Commutative-Monoid) → add-Rational-Commutative-Monoid x zero-Rational-Commutative-Monoid = x right-unit-law-add-Rational-Commutative-Monoid = right-unit-law-mul-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid multiple-Rational-Commutative-Monoid : ℕ → type-Rational-Commutative-Monoid → type-Rational-Commutative-Monoid multiple-Rational-Commutative-Monoid = power-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid is-rational-Rational-Commutative-Monoid : is-rational-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid is-rational-Rational-Commutative-Monoid = pr2 M
Recent changes
- 2023-09-13. Egbert Rijke and Fredrik Bakke. rational commutative monoids (#763).