Rational commutative monoids

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-09-13.
Last modified on 2023-09-13.

module group-theory.rational-commutative-monoids where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import group-theory.commutative-monoids
open import group-theory.monoids
open import group-theory.powers-of-elements-commutative-monoids

Idea

A rational commutative monoid is a commutative monoid (M,0,+) in which the map x ↦ nx is invertible for every natural number n > 0. This condition implies that we can invert the natural numbers in M, which are the elements of the form n1 in M.

Note: Since we usually write commutative monoids multiplicatively, the condition that a commutative monoid is rational is that the map x ↦ xⁿ is invertible for every natural number n > 0. However, for rational commutative monoids we will write the binary operation additively.

Definition

The predicate of being a rational commutative monoid

module _
  {l : Level} (M : Commutative-Monoid l)
  where

  is-rational-prop-Commutative-Monoid : Prop l
  is-rational-prop-Commutative-Monoid =
    Π-Prop 
      ( λ n 
        is-equiv-Prop (power-Commutative-Monoid M (succ-ℕ n)))

  is-rational-Commutative-Monoid : UU l
  is-rational-Commutative-Monoid =
    type-Prop is-rational-prop-Commutative-Monoid

  is-prop-is-rational-Commutative-Monoid :
    is-prop is-rational-Commutative-Monoid
  is-prop-is-rational-Commutative-Monoid =
    is-prop-type-Prop is-rational-prop-Commutative-Monoid

Rational commutative monoids

Rational-Commutative-Monoid : (l : Level)  UU (lsuc l)
Rational-Commutative-Monoid l =
  Σ (Commutative-Monoid l) is-rational-Commutative-Monoid

module _
  {l : Level} (M : Rational-Commutative-Monoid l)
  where

  commutative-monoid-Rational-Commutative-Monoid : Commutative-Monoid l
  commutative-monoid-Rational-Commutative-Monoid = pr1 M

  monoid-Rational-Commutative-Monoid : Monoid l
  monoid-Rational-Commutative-Monoid =
    monoid-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

  type-Rational-Commutative-Monoid : UU l
  type-Rational-Commutative-Monoid =
    type-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

  add-Rational-Commutative-Monoid :
    (x y : type-Rational-Commutative-Monoid) 
    type-Rational-Commutative-Monoid
  add-Rational-Commutative-Monoid =
    mul-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

  zero-Rational-Commutative-Monoid : type-Rational-Commutative-Monoid
  zero-Rational-Commutative-Monoid =
    unit-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

  associative-add-Rational-Commutative-Monoid :
    (x y z : type-Rational-Commutative-Monoid) 
    add-Rational-Commutative-Monoid
      ( add-Rational-Commutative-Monoid x y)
      ( z) 
    add-Rational-Commutative-Monoid
      ( x)
      ( add-Rational-Commutative-Monoid y z)
  associative-add-Rational-Commutative-Monoid =
    associative-mul-Commutative-Monoid
      commutative-monoid-Rational-Commutative-Monoid

  left-unit-law-add-Rational-Commutative-Monoid :
    (x : type-Rational-Commutative-Monoid) 
    add-Rational-Commutative-Monoid zero-Rational-Commutative-Monoid x  x
  left-unit-law-add-Rational-Commutative-Monoid =
    left-unit-law-mul-Commutative-Monoid
      commutative-monoid-Rational-Commutative-Monoid

  right-unit-law-add-Rational-Commutative-Monoid :
    (x : type-Rational-Commutative-Monoid) 
    add-Rational-Commutative-Monoid x zero-Rational-Commutative-Monoid  x
  right-unit-law-add-Rational-Commutative-Monoid =
    right-unit-law-mul-Commutative-Monoid
      commutative-monoid-Rational-Commutative-Monoid

  multiple-Rational-Commutative-Monoid :
      type-Rational-Commutative-Monoid  type-Rational-Commutative-Monoid
  multiple-Rational-Commutative-Monoid =
    power-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

  is-rational-Rational-Commutative-Monoid :
    is-rational-Commutative-Monoid
      commutative-monoid-Rational-Commutative-Monoid
  is-rational-Rational-Commutative-Monoid = pr2 M

Recent changes