Inequality of increasing binary sequences
Content created by Fredrik Bakke.
Created on 2025-10-25.
Last modified on 2025-10-25.
module set-theory.inequality-increasing-binary-sequences where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.inequality-booleans open import foundation.propositions open import foundation.unit-type open import foundation.universe-levels open import foundation-core.identity-types open import order-theory.posets open import order-theory.preorders open import set-theory.increasing-binary-sequences
Idea
Given two
increasing binary sequences
x and y, then x is less than or equal to y if yᵢ ≤ xᵢ for every
i : ℕ. This defines the
standard inequality¶
relation on increasing binary sequences.
Definitions
leq-ℕ∞↗ : ℕ∞↗ → ℕ∞↗ → UU lzero leq-ℕ∞↗ x y = (n : ℕ) → leq-bool (sequence-ℕ∞↗ y n) (sequence-ℕ∞↗ x n) infix 30 _≤-ℕ∞↗_ _≤-ℕ∞↗_ : ℕ∞↗ → ℕ∞↗ → UU lzero _≤-ℕ∞↗_ = leq-ℕ∞↗ abstract is-prop-leq-ℕ∞↗ : (x y : ℕ∞↗) → is-prop (leq-ℕ∞↗ x y) is-prop-leq-ℕ∞↗ x y = is-prop-Π (λ n → is-prop-leq-bool {sequence-ℕ∞↗ y n} {sequence-ℕ∞↗ x n}) leq-prop-ℕ∞↗ : ℕ∞↗ → ℕ∞↗ → Prop lzero leq-prop-ℕ∞↗ x y = (leq-ℕ∞↗ x y , is-prop-leq-ℕ∞↗ x y)
Properties
Inequality of increasing binary sequences is reflexive
abstract refl-leq-ℕ∞↗ : (x : ℕ∞↗) → leq-ℕ∞↗ x x refl-leq-ℕ∞↗ x n = refl-leq-bool {sequence-ℕ∞↗ x n} abstract leq-Eq-ℕ∞↗' : (x y : ℕ∞↗) → Eq-ℕ∞↗ y x → leq-ℕ∞↗ x y leq-Eq-ℕ∞↗' x y H = leq-eq-bool ∘ H abstract leq-Eq-ℕ∞↗ : (x y : ℕ∞↗) → Eq-ℕ∞↗ x y → leq-ℕ∞↗ x y leq-Eq-ℕ∞↗ x y H = leq-Eq-ℕ∞↗' x y (inv-htpy H) abstract leq-eq-ℕ∞↗ : (x y : ℕ∞↗) → x = y → leq-ℕ∞↗ x y leq-eq-ℕ∞↗ x .x refl = refl-leq-ℕ∞↗ x
Inequality of increasing binary sequences is transitive
transitive-leq-ℕ∞↗ : (x y z : ℕ∞↗) → leq-ℕ∞↗ y z → leq-ℕ∞↗ x y → leq-ℕ∞↗ x z transitive-leq-ℕ∞↗ x y z p q n = transitive-leq-bool { sequence-ℕ∞↗ z n} { sequence-ℕ∞↗ y n} { sequence-ℕ∞↗ x n} ( q n) ( p n)
Inequality of increasing binary sequences is antisymmetric
abstract antisymmetric-leq-ℕ∞↗ : (x y : ℕ∞↗) → leq-ℕ∞↗ x y → leq-ℕ∞↗ y x → x = y antisymmetric-leq-ℕ∞↗ x y p q = eq-Eq-ℕ∞↗ ( λ n → antisymmetric-leq-bool { sequence-ℕ∞↗ x n} { sequence-ℕ∞↗ y n} ( q n) ( p n))
The poset of increasing binary sequences
is-preorder-leq-ℕ∞↗ : is-preorder-Relation-Prop leq-prop-ℕ∞↗ is-preorder-leq-ℕ∞↗ = (refl-leq-ℕ∞↗ , transitive-leq-ℕ∞↗) ℕ∞↗-Preorder : Preorder lzero lzero ℕ∞↗-Preorder = (ℕ∞↗ , leq-prop-ℕ∞↗ , is-preorder-leq-ℕ∞↗) ℕ∞↗-Poset : Poset lzero lzero ℕ∞↗-Poset = (ℕ∞↗-Preorder , antisymmetric-leq-ℕ∞↗)
The successor function preserves order
preserves-order-succ-ℕ∞↗ : (x y : ℕ∞↗) → leq-ℕ∞↗ x y → leq-ℕ∞↗ (succ-ℕ∞↗ x) (succ-ℕ∞↗ y) preserves-order-succ-ℕ∞↗ x y p zero-ℕ = star preserves-order-succ-ℕ∞↗ x y p (succ-ℕ n) = p n
The successor function is inflationary
leq-succ-ℕ∞↗ : (x : ℕ∞↗) → leq-ℕ∞↗ x (succ-ℕ∞↗ x) leq-succ-ℕ∞↗ x zero-ℕ = star leq-succ-ℕ∞↗ x (succ-ℕ n) = is-increasing-sequence-ℕ∞↗ x n
Zero is the smallest element
leq-zero-ℕ∞↗ : (x : ℕ∞↗) → leq-ℕ∞↗ zero-ℕ∞↗ x leq-zero-ℕ∞↗ x n = leq-true-bool {sequence-ℕ∞↗ x n} Eq-leq-zero-ℕ∞↗ : (x : ℕ∞↗) → leq-ℕ∞↗ x zero-ℕ∞↗ → Eq-ℕ∞↗ x zero-ℕ∞↗ Eq-leq-zero-ℕ∞↗ x p = eq-leq-true-bool ∘ p eq-leq-zero-ℕ∞↗ : (x : ℕ∞↗) → leq-ℕ∞↗ x zero-ℕ∞↗ → x = zero-ℕ∞↗ eq-leq-zero-ℕ∞↗ x p = eq-Eq-ℕ∞↗ (Eq-leq-zero-ℕ∞↗ x p)
Infinity is the largest element
infinity-leq-ℕ∞↗ : (x : ℕ∞↗) → leq-ℕ∞↗ x infinity-ℕ∞↗ infinity-leq-ℕ∞↗ x n = leq-false-bool {sequence-ℕ∞↗ x n} Eq-leq-infinity-ℕ∞↗ : (x : ℕ∞↗) → leq-ℕ∞↗ infinity-ℕ∞↗ x → Eq-ℕ∞↗ x infinity-ℕ∞↗ Eq-leq-infinity-ℕ∞↗ x p = eq-leq-false-bool ∘ p eq-leq-infinity-ℕ∞↗ : (x : ℕ∞↗) → leq-ℕ∞↗ infinity-ℕ∞↗ x → x = infinity-ℕ∞↗ eq-leq-infinity-ℕ∞↗ x p = eq-Eq-ℕ∞↗ (Eq-leq-infinity-ℕ∞↗ x p)
Recent changes
- 2025-10-25. Fredrik Bakke. Logic, equality, apartness, and compactness (#1264).