Functorial action on isometries of Cauchy pseudocompletions of pseudometric spaces
Content created by malarbol.
Created on 2026-02-12.
Last modified on 2026-02-12.
module metric-spaces.functoriality-isometries-cauchy-pseudocompletions-of-pseudometric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-approximations-pseudometric-spaces open import metric-spaces.cauchy-pseudocompletions-of-pseudometric-spaces open import metric-spaces.functoriality-short-maps-cauchy-pseudocompletions-of-pseudometric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.maps-pseudometric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.short-maps-pseudometric-spaces
Idea
The functorial action of Cauchy pseudocompletions on short maps maps isometries between pseudometric spaces to isometries between their Cauchy pseudocompletions.
It is the functorial action¶ of Cauchy pseudocompletions on isometries between pseudometric spaces.
Definitions
The action on isometries of Cauchy pseudocompletions
module _ {l1 l2 l1' l2' : Level} (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') (f : isometry-Pseudometric-Space A B) where map-isometry-cauchy-pseudocompletion-Pseudometric-Space : map-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( cauchy-pseudocompletion-Pseudometric-Space B) map-isometry-cauchy-pseudocompletion-Pseudometric-Space = map-short-map-cauchy-pseudocompletion-Pseudometric-Space A B ( short-map-isometry-Pseudometric-Space A B f)
Properties
The action on isometries is an isometry
module _ {l1 l2 l1' l2' : Level} (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') (f : isometry-Pseudometric-Space A B) where abstract preserves-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space : (d : ℚ⁺) → (x y : cauchy-approximation-Pseudometric-Space A) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( d) ( x) ( y) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space B) ( d) ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f x) ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f y) preserves-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space = preserves-neighborhoods-map-short-map-cauchy-pseudocompletion-Pseudometric-Space ( A) ( B) ( short-map-isometry-Pseudometric-Space A B f) reflects-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space : (d : ℚ⁺) → (x y : cauchy-approximation-Pseudometric-Space A) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space B) ( d) ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f x) ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f y) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( d) ( x) ( y) reflects-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space d x y Nxy α β = reflects-neighborhoods-map-isometry-Pseudometric-Space ( A) ( B) ( f) ( α +ℚ⁺ β +ℚ⁺ d) ( map-cauchy-approximation-Pseudometric-Space A x α) ( map-cauchy-approximation-Pseudometric-Space A y β) ( Nxy α β) is-isometry-map-isometry-cauchy-pseudocompletion-Pseudometric-Space : is-isometry-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( cauchy-pseudocompletion-Pseudometric-Space B) ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f) is-isometry-map-isometry-cauchy-pseudocompletion-Pseudometric-Space d x y = ( ( preserves-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space ( d) ( x) ( y)) , ( reflects-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space ( d) ( x) ( y))) module _ {l1 l2 l1' l2' : Level} (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') (f : isometry-Pseudometric-Space A B) where isometry-cauchy-pseudocompletion-Pseudometric-Space : isometry-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( cauchy-pseudocompletion-Pseudometric-Space B) isometry-cauchy-pseudocompletion-Pseudometric-Space = ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f , is-isometry-map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f)
Recent changes
- 2026-02-12. malarbol. Fix names for Cauchy pseudocompletions constructions (#1814).