Functorial action on isometries of Cauchy pseudocompletions of pseudometric spaces

Content created by malarbol.

Created on 2026-02-12.
Last modified on 2026-02-12.

module metric-spaces.functoriality-isometries-cauchy-pseudocompletions-of-pseudometric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-pseudometric-spaces
open import metric-spaces.cauchy-pseudocompletions-of-pseudometric-spaces
open import metric-spaces.functoriality-short-maps-cauchy-pseudocompletions-of-pseudometric-spaces
open import metric-spaces.isometries-pseudometric-spaces
open import metric-spaces.maps-pseudometric-spaces
open import metric-spaces.pseudometric-spaces
open import metric-spaces.short-maps-pseudometric-spaces

Idea

The functorial action of Cauchy pseudocompletions on short maps maps isometries between pseudometric spaces to isometries between their Cauchy pseudocompletions.

It is the functorial action of Cauchy pseudocompletions on isometries between pseudometric spaces.

Definitions

The action on isometries of Cauchy pseudocompletions

module _
  {l1 l2 l1' l2' : Level}
  (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2')
  (f : isometry-Pseudometric-Space A B)
  where

  map-isometry-cauchy-pseudocompletion-Pseudometric-Space :
    map-Pseudometric-Space
      ( cauchy-pseudocompletion-Pseudometric-Space A)
      ( cauchy-pseudocompletion-Pseudometric-Space B)
  map-isometry-cauchy-pseudocompletion-Pseudometric-Space =
    map-short-map-cauchy-pseudocompletion-Pseudometric-Space A B
      ( short-map-isometry-Pseudometric-Space A B f)

Properties

The action on isometries is an isometry

module _
  {l1 l2 l1' l2' : Level}
  (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2')
  (f : isometry-Pseudometric-Space A B)
  where abstract

  preserves-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space :
    (d : ℚ⁺) 
    (x y : cauchy-approximation-Pseudometric-Space A) 
    neighborhood-Pseudometric-Space
      ( cauchy-pseudocompletion-Pseudometric-Space A)
      ( d)
      ( x)
      ( y) 
    neighborhood-Pseudometric-Space
      ( cauchy-pseudocompletion-Pseudometric-Space B)
      ( d)
      ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f x)
      ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f y)
  preserves-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space =
    preserves-neighborhoods-map-short-map-cauchy-pseudocompletion-Pseudometric-Space
      ( A)
      ( B)
      ( short-map-isometry-Pseudometric-Space A B f)

  reflects-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space :
    (d : ℚ⁺) 
    (x y : cauchy-approximation-Pseudometric-Space A) 
    neighborhood-Pseudometric-Space
      ( cauchy-pseudocompletion-Pseudometric-Space B)
      ( d)
      ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f x)
      ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f y) 
    neighborhood-Pseudometric-Space
      ( cauchy-pseudocompletion-Pseudometric-Space A)
      ( d)
      ( x)
      ( y)
  reflects-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space
    d x y Nxy α β =
    reflects-neighborhoods-map-isometry-Pseudometric-Space
      ( A)
      ( B)
      ( f)
      ( α +ℚ⁺ β +ℚ⁺ d)
      ( map-cauchy-approximation-Pseudometric-Space A x α)
      ( map-cauchy-approximation-Pseudometric-Space A y β)
      ( Nxy α β)

  is-isometry-map-isometry-cauchy-pseudocompletion-Pseudometric-Space :
    is-isometry-Pseudometric-Space
      ( cauchy-pseudocompletion-Pseudometric-Space A)
      ( cauchy-pseudocompletion-Pseudometric-Space B)
      ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f)
  is-isometry-map-isometry-cauchy-pseudocompletion-Pseudometric-Space d x y =
    ( ( preserves-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space
        ( d)
        ( x)
        ( y)) ,
      ( reflects-neighborhoods-map-isometry-cauchy-pseudocompletion-Pseudometric-Space
        ( d)
        ( x)
        ( y)))

module _
  {l1 l2 l1' l2' : Level}
  (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2')
  (f : isometry-Pseudometric-Space A B)
  where

  isometry-cauchy-pseudocompletion-Pseudometric-Space :
    isometry-Pseudometric-Space
      ( cauchy-pseudocompletion-Pseudometric-Space A)
      ( cauchy-pseudocompletion-Pseudometric-Space B)
  isometry-cauchy-pseudocompletion-Pseudometric-Space =
    ( map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f ,
      is-isometry-map-isometry-cauchy-pseudocompletion-Pseudometric-Space A B f)

Recent changes