Series in the real numbers

Content created by Louis Wasserman.

Created on 2025-12-03.
Last modified on 2025-12-30.

module analysis.series-real-numbers where
Imports
open import analysis.series-complete-metric-abelian-groups
open import analysis.series-metric-abelian-groups

open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import lists.sequences

open import order-theory.increasing-sequences-posets

open import real-numbers.absolute-value-real-numbers
open import real-numbers.addition-nonnegative-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.difference-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.metric-additive-group-of-real-numbers
open import real-numbers.nonnegative-real-numbers

Idea

A series in the real numbers is a series in the metric additive group of real numbers.

Definition

series-ℝ : (l : Level)  UU (lsuc l)
series-ℝ l = series-Metric-Ab (metric-ab-add-ℝ l)

series-terms-ℝ : {l : Level}  sequence ( l)  series-ℝ l
series-terms-ℝ = series-terms-Metric-Ab

term-series-ℝ : {l : Level}  series-ℝ l  sequence ( l)
term-series-ℝ = term-series-Metric-Ab

partial-sum-series-ℝ : {l : Level}  series-ℝ l  sequence ( l)
partial-sum-series-ℝ {l} = partial-sum-series-Metric-Ab

Properties

The series of absolute values

module _
  {l : Level}
  (σ : series-ℝ l)
  where

  map-abs-series-ℝ : series-ℝ l
  map-abs-series-ℝ = series-terms-ℝ (abs-ℝ  term-series-ℝ σ)

Dropping terms from a series

module _
  {l : Level}
  where

  drop-series-ℝ :   series-ℝ l  series-ℝ l
  drop-series-ℝ = drop-series-Metric-Ab

The partial sums of a series after dropping terms

module _
  {l : Level}
  where

  abstract
    partial-sum-drop-series-ℝ :
      (n : ) (σ : series-ℝ l) (i : ) 
      partial-sum-series-ℝ (drop-series-ℝ n σ) i 
      partial-sum-series-ℝ σ (n +ℕ i) -ℝ partial-sum-series-ℝ σ n
    partial-sum-drop-series-ℝ = partial-sum-drop-series-Metric-Ab

Recent changes