Series in the real numbers
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-30.
module analysis.series-real-numbers where
Imports
open import analysis.series-complete-metric-abelian-groups open import analysis.series-metric-abelian-groups open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import lists.sequences open import order-theory.increasing-sequences-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.addition-nonnegative-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-additive-group-of-real-numbers open import real-numbers.nonnegative-real-numbers
Idea
A series¶ in the real numbers is a series in the metric additive group of real numbers.
Definition
series-ℝ : (l : Level) → UU (lsuc l) series-ℝ l = series-Metric-Ab (metric-ab-add-ℝ l) series-terms-ℝ : {l : Level} → sequence (ℝ l) → series-ℝ l series-terms-ℝ = series-terms-Metric-Ab term-series-ℝ : {l : Level} → series-ℝ l → sequence (ℝ l) term-series-ℝ = term-series-Metric-Ab partial-sum-series-ℝ : {l : Level} → series-ℝ l → sequence (ℝ l) partial-sum-series-ℝ {l} = partial-sum-series-Metric-Ab
Properties
The series of absolute values
module _ {l : Level} (σ : series-ℝ l) where map-abs-series-ℝ : series-ℝ l map-abs-series-ℝ = series-terms-ℝ (abs-ℝ ∘ term-series-ℝ σ)
Dropping terms from a series
module _ {l : Level} where drop-series-ℝ : ℕ → series-ℝ l → series-ℝ l drop-series-ℝ = drop-series-Metric-Ab
The partial sums of a series after dropping terms
module _ {l : Level} where abstract partial-sum-drop-series-ℝ : (n : ℕ) (σ : series-ℝ l) (i : ℕ) → partial-sum-series-ℝ (drop-series-ℝ n σ) i = partial-sum-series-ℝ σ (n +ℕ i) -ℝ partial-sum-series-ℝ σ n partial-sum-drop-series-ℝ = partial-sum-drop-series-Metric-Ab
Recent changes
- 2025-12-30. Louis Wasserman. The ratio test for convergence in real Banach spaces (#1716).
- 2025-12-25. Louis Wasserman. The absolute convergence test in real Banach spaces (#1714).
- 2025-12-03. Louis Wasserman. Series in Banach spaces (#1710).