The precategory of maps and natural transformations from a small to a large precategory
Content created by Fredrik Bakke.
Created on 2023-09-27.
Last modified on 2024-03-11.
module category-theory.precategory-of-maps-from-small-to-large-precategories where
Imports
open import category-theory.large-precategories open import category-theory.maps-from-small-to-large-precategories open import category-theory.natural-transformations-maps-from-small-to-large-precategories open import category-theory.precategories open import foundation.identity-types open import foundation.strictly-involutive-identity-types open import foundation.universe-levels
Idea
Maps from (small) precategories to large precategories and natural transformations between them introduce a new large precategory whose identity map and composition structure are inherited pointwise from the codomain precategory. This is called the precategory of maps from a small to a large precategory.
Definitions
The large precategory of maps and natural transformations from a small to a large precategory
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where comp-hom-map-large-precategory-Small-Large-Precategory : {γF γG γH : Level} {F : map-Small-Large-Precategory C D γF} {G : map-Small-Large-Precategory C D γG} {H : map-Small-Large-Precategory C D γH} → natural-transformation-map-Small-Large-Precategory C D G H → natural-transformation-map-Small-Large-Precategory C D F G → natural-transformation-map-Small-Large-Precategory C D F H comp-hom-map-large-precategory-Small-Large-Precategory {F = F} {G} {H} = comp-natural-transformation-map-Small-Large-Precategory C D F G H associative-comp-hom-map-large-precategory-Small-Large-Precategory : {γF γG γH γI : Level} {F : map-Small-Large-Precategory C D γF} {G : map-Small-Large-Precategory C D γG} {H : map-Small-Large-Precategory C D γH} {I : map-Small-Large-Precategory C D γI} (h : natural-transformation-map-Small-Large-Precategory C D H I) (g : natural-transformation-map-Small-Large-Precategory C D G H) (f : natural-transformation-map-Small-Large-Precategory C D F G) → comp-natural-transformation-map-Small-Large-Precategory C D F G I ( comp-natural-transformation-map-Small-Large-Precategory C D G H I h g) ( f) = comp-natural-transformation-map-Small-Large-Precategory C D F H I ( h) ( comp-natural-transformation-map-Small-Large-Precategory C D F G H g f) associative-comp-hom-map-large-precategory-Small-Large-Precategory {F = F} {G} {H} {I} h g f = associative-comp-natural-transformation-map-Small-Large-Precategory C D F G H I f g h involutive-eq-associative-comp-hom-map-large-precategory-Small-Large-Precategory : {γF γG γH γI : Level} {F : map-Small-Large-Precategory C D γF} {G : map-Small-Large-Precategory C D γG} {H : map-Small-Large-Precategory C D γH} {I : map-Small-Large-Precategory C D γI} (h : natural-transformation-map-Small-Large-Precategory C D H I) (g : natural-transformation-map-Small-Large-Precategory C D G H) (f : natural-transformation-map-Small-Large-Precategory C D F G) → comp-natural-transformation-map-Small-Large-Precategory C D F G I ( comp-natural-transformation-map-Small-Large-Precategory C D G H I h g) ( f) =ⁱ comp-natural-transformation-map-Small-Large-Precategory C D F H I ( h) ( comp-natural-transformation-map-Small-Large-Precategory C D F G H g f) involutive-eq-associative-comp-hom-map-large-precategory-Small-Large-Precategory {F = F} {G} {H} {I} h g f = involutive-eq-associative-comp-natural-transformation-map-Small-Large-Precategory C D F G H I f g h id-hom-map-large-precategory-Small-Large-Precategory : {γF : Level} {F : map-Small-Large-Precategory C D γF} → natural-transformation-map-Small-Large-Precategory C D F F id-hom-map-large-precategory-Small-Large-Precategory {F = F} = id-natural-transformation-map-Small-Large-Precategory C D F left-unit-law-comp-hom-map-large-precategory-Small-Large-Precategory : {γF γG : Level} {F : map-Small-Large-Precategory C D γF} {G : map-Small-Large-Precategory C D γG} (a : natural-transformation-map-Small-Large-Precategory C D F G) → ( comp-natural-transformation-map-Small-Large-Precategory C D F G G ( id-natural-transformation-map-Small-Large-Precategory C D G) a) = ( a) left-unit-law-comp-hom-map-large-precategory-Small-Large-Precategory { F = F} {G} = left-unit-law-comp-natural-transformation-map-Small-Large-Precategory C D F G right-unit-law-comp-hom-map-large-precategory-Small-Large-Precategory : {γF γG : Level} {F : map-Small-Large-Precategory C D γF} {G : map-Small-Large-Precategory C D γG} (a : natural-transformation-map-Small-Large-Precategory C D F G) → ( comp-natural-transformation-map-Small-Large-Precategory C D F F G a (id-natural-transformation-map-Small-Large-Precategory C D F)) = ( a) right-unit-law-comp-hom-map-large-precategory-Small-Large-Precategory { F = F} {G} = right-unit-law-comp-natural-transformation-map-Small-Large-Precategory C D F G map-large-precategory-Small-Large-Precategory : Large-Precategory (λ l → l1 ⊔ l2 ⊔ α l ⊔ β l l) (λ l l' → l1 ⊔ l2 ⊔ β l l') obj-Large-Precategory map-large-precategory-Small-Large-Precategory = map-Small-Large-Precategory C D hom-set-Large-Precategory map-large-precategory-Small-Large-Precategory = natural-transformation-map-set-Small-Large-Precategory C D comp-hom-Large-Precategory map-large-precategory-Small-Large-Precategory = comp-hom-map-large-precategory-Small-Large-Precategory id-hom-Large-Precategory map-large-precategory-Small-Large-Precategory = id-hom-map-large-precategory-Small-Large-Precategory involutive-eq-associative-comp-hom-Large-Precategory map-large-precategory-Small-Large-Precategory = involutive-eq-associative-comp-hom-map-large-precategory-Small-Large-Precategory left-unit-law-comp-hom-Large-Precategory map-large-precategory-Small-Large-Precategory = left-unit-law-comp-hom-map-large-precategory-Small-Large-Precategory right-unit-law-comp-hom-Large-Precategory map-large-precategory-Small-Large-Precategory = right-unit-law-comp-hom-map-large-precategory-Small-Large-Precategory
The small precategories of maps and natural transformations from a small to a large precategory
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where map-precategory-Small-Large-Precategory : (l : Level) → Precategory (l1 ⊔ l2 ⊔ α l ⊔ β l l) (l1 ⊔ l2 ⊔ β l l) map-precategory-Small-Large-Precategory = precategory-Large-Precategory ( map-large-precategory-Small-Large-Precategory C D)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).