Reflective subuniverses

Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.

Created on 2023-03-09.
Last modified on 2023-09-15.

module orthogonal-factorization-systems.reflective-subuniverses where
Imports
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.subuniverses
open import foundation.universe-levels

open import orthogonal-factorization-systems.local-types
open import orthogonal-factorization-systems.localizations-subuniverses
open import orthogonal-factorization-systems.modal-operators

Idea

A reflective subuniverse is a subuniverse P together with a reflecting operator ○ : UU → UU that take values in P, and a modal unit A → ○ A for all small types A, with the property that the types in P are local at the modal unit for every A. Hence the modal types with respect to are precisely the types in the reflective subuniverse.

Definitions

The is-reflective-subuniverse predicate on subuniverses

is-reflective-subuniverse :
  {l lP : Level} (P : UU l  Prop lP)  UU (lsuc l  lP)
is-reflective-subuniverse {l} P =
  Σ ( operator-modality l l)
    ( λ  
      Σ ( unit-modality )
        ( λ unit-○ 
          ( (X : UU l)  is-in-subuniverse P ( X)) ×
          ( (X Y : UU l)  is-in-subuniverse P X  is-local (unit-○ {Y}) X)))
module _
  {l lP : Level} (P : subuniverse l lP)
  (is-reflective-P : is-reflective-subuniverse P)
  where

  operator-modality-is-reflective-subuniverse : operator-modality l l
  operator-modality-is-reflective-subuniverse = pr1 is-reflective-P

  unit-modality-is-reflective-subuniverse :
    unit-modality (operator-modality-is-reflective-subuniverse)
  unit-modality-is-reflective-subuniverse = pr1 (pr2 is-reflective-P)

  is-in-subuniverse-image-operator-modality-is-reflective-subuniverse :
    (X : UU l) 
    is-in-subuniverse P (operator-modality-is-reflective-subuniverse X)
  is-in-subuniverse-image-operator-modality-is-reflective-subuniverse =
    pr1 (pr2 (pr2 is-reflective-P))

  is-local-is-in-subuniverse-is-reflective-subuniverse :
    (X Y : UU l) 
    is-in-subuniverse P X 
    is-local (unit-modality-is-reflective-subuniverse {Y}) X
  is-local-is-in-subuniverse-is-reflective-subuniverse =
    pr2 (pr2 (pr2 is-reflective-P))

The type of reflective subuniverses

reflective-subuniverse : (l lP : Level)  UU (lsuc l  lsuc lP)
reflective-subuniverse l lP =
  Σ (UU l  Prop lP) (is-reflective-subuniverse)
module _
  {l lP : Level} (P : reflective-subuniverse l lP)
  where

  subuniverse-reflective-subuniverse : subuniverse l lP
  subuniverse-reflective-subuniverse = pr1 P

  is-in-reflective-subuniverse : UU l  UU lP
  is-in-reflective-subuniverse =
    is-in-subuniverse subuniverse-reflective-subuniverse

  inclusion-reflective-subuniverse :
    type-subuniverse (subuniverse-reflective-subuniverse)  UU l
  inclusion-reflective-subuniverse =
    inclusion-subuniverse subuniverse-reflective-subuniverse

  is-reflective-subuniverse-reflective-subuniverse :
    is-reflective-subuniverse (subuniverse-reflective-subuniverse)
  is-reflective-subuniverse-reflective-subuniverse = pr2 P

  operator-modality-reflective-subuniverse : operator-modality l l
  operator-modality-reflective-subuniverse =
    operator-modality-is-reflective-subuniverse
      ( subuniverse-reflective-subuniverse)
      ( is-reflective-subuniverse-reflective-subuniverse)

  unit-modality-reflective-subuniverse :
    unit-modality (operator-modality-reflective-subuniverse)
  unit-modality-reflective-subuniverse =
    unit-modality-is-reflective-subuniverse
      ( subuniverse-reflective-subuniverse)
      ( is-reflective-subuniverse-reflective-subuniverse)

  is-in-subuniverse-image-operator-modality-reflective-subuniverse :
    ( X : UU l) 
    is-in-subuniverse
      ( subuniverse-reflective-subuniverse)
      ( operator-modality-reflective-subuniverse X)
  is-in-subuniverse-image-operator-modality-reflective-subuniverse =
    is-in-subuniverse-image-operator-modality-is-reflective-subuniverse
      ( subuniverse-reflective-subuniverse)
      ( is-reflective-subuniverse-reflective-subuniverse)

  is-local-is-in-subuniverse-reflective-subuniverse :
    ( X Y : UU l) 
    is-in-subuniverse subuniverse-reflective-subuniverse X 
    is-local (unit-modality-reflective-subuniverse {Y}) X
  is-local-is-in-subuniverse-reflective-subuniverse =
    is-local-is-in-subuniverse-is-reflective-subuniverse
      ( subuniverse-reflective-subuniverse)
      ( is-reflective-subuniverse-reflective-subuniverse)

Properties

Reflective subuniverses are subuniverses that have all localizations

module _
  {l lP : Level} (P : subuniverse l lP)
  (is-reflective-P : is-reflective-subuniverse P)
  where

  has-all-localizations-is-reflective-subuniverse :
    (A : UU l)  subuniverse-localization P A
  pr1 (has-all-localizations-is-reflective-subuniverse A) =
    operator-modality-is-reflective-subuniverse P is-reflective-P A
  pr1 (pr2 (has-all-localizations-is-reflective-subuniverse A)) =
    is-in-subuniverse-image-operator-modality-is-reflective-subuniverse
      P is-reflective-P A
  pr1 (pr2 (pr2 (has-all-localizations-is-reflective-subuniverse A))) =
    unit-modality-is-reflective-subuniverse P is-reflective-P
  pr2 (pr2 (pr2 (has-all-localizations-is-reflective-subuniverse A)))
    X is-in-subuniverse-X =
      is-local-is-in-subuniverse-is-reflective-subuniverse
        P is-reflective-P X A is-in-subuniverse-X

module _
  {l lP : Level} (P : subuniverse l lP)
  (L : (A : UU l)  subuniverse-localization P A)
  where

  is-reflective-has-all-localizations-subuniverse :
    is-reflective-subuniverse P
  pr1 is-reflective-has-all-localizations-subuniverse A =
    type-subuniverse-localization P (L A)
  pr1 (pr2 is-reflective-has-all-localizations-subuniverse) {A} =
    unit-subuniverse-localization P (L A)
  pr1 (pr2 (pr2 is-reflective-has-all-localizations-subuniverse)) A =
    is-in-subuniverse-subuniverse-localization P (L A)
  pr2 (pr2 (pr2 is-reflective-has-all-localizations-subuniverse))
    A B is-in-subuniverse-A =
      is-local-at-unit-is-in-subuniverse-subuniverse-localization
        P (L B) A is-in-subuniverse-A

See also

References

  1. Univalent Foundations Project, Homotopy Type Theory – Univalent Foundations of Mathematics (2013) (website, arXiv:1308.0729, DOI:10.48550)
  2. Egbert Rijke, Michael Shulman, Bas Spitters, Modalities in homotopy type theory, Logical Methods in Computer Science, Volume 16, Issue 1, 2020 (arXiv:1706.07526, doi:10.23638)
  3. Egbert Rijke, Classifying Types (arXiv:1906.09435, doi:10.48550)

Recent changes