Subgroups of higher groups
Content created by Egbert Rijke.
Created on 2023-04-10.
Last modified on 2023-06-10.
module higher-group-theory.subgroups-higher-groups where
Imports
open import foundation.0-connected-types open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.sets open import foundation.universe-levels open import higher-group-theory.higher-groups open import structured-types.pointed-types
Idea
A subgroup of a higher group is a pointed set bundle over its classifying type with connected total space.
Definition
subgroup-action-∞-Group : {l1 : Level} (l2 : Level) (G : ∞-Group l1) → classifying-type-∞-Group G → UU (l1 ⊔ lsuc l2) subgroup-action-∞-Group l2 G u = Σ ( classifying-type-∞-Group G → Set l2) ( λ X → ( type-Set (X u)) × ( is-0-connected (Σ (classifying-type-∞-Group G) (type-Set ∘ X)))) subgroup-∞-Group : {l1 : Level} (l2 : Level) (G : ∞-Group l1) → UU (l1 ⊔ lsuc l2) subgroup-∞-Group l2 G = subgroup-action-∞-Group l2 G (shape-∞-Group G) module _ {l1 l2 : Level} (G : ∞-Group l1) (H : subgroup-∞-Group l2 G) where set-action-subgroup-∞-Group : classifying-type-∞-Group G → Set l2 set-action-subgroup-∞-Group = pr1 H action-subgroup-∞-Group : classifying-type-∞-Group G → UU l2 action-subgroup-∞-Group = type-Set ∘ set-action-subgroup-∞-Group classifying-type-subgroup-∞-Group : UU (l1 ⊔ l2) classifying-type-subgroup-∞-Group = Σ (classifying-type-∞-Group G) action-subgroup-∞-Group shape-subgroup-∞-Group : classifying-type-subgroup-∞-Group pr1 shape-subgroup-∞-Group = shape-∞-Group G pr2 shape-subgroup-∞-Group = pr1 (pr2 H) classifying-pointed-type-subgroup-∞-Group : Pointed-Type (l1 ⊔ l2) pr1 classifying-pointed-type-subgroup-∞-Group = classifying-type-subgroup-∞-Group pr2 classifying-pointed-type-subgroup-∞-Group = shape-subgroup-∞-Group is-connected-classifying-type-subgroup-∞-Group : is-0-connected classifying-type-subgroup-∞-Group is-connected-classifying-type-subgroup-∞-Group = pr2 (pr2 H) ∞-group-subgroup-∞-Group : ∞-Group (l1 ⊔ l2) pr1 ∞-group-subgroup-∞-Group = classifying-pointed-type-subgroup-∞-Group pr2 ∞-group-subgroup-∞-Group = is-connected-classifying-type-subgroup-∞-Group
Recent changes
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-04-10. Egbert Rijke. Factoring out higher group theory (#559).