Dedekind finite sets
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-04-06.
Last modified on 2024-09-23.
module univalent-combinatorics.dedekind-finite-sets where
Imports
open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.propositions open import foundation.sets open import foundation.universe-levels
Idea
Dedekind finite sets¶ are
sets X
with the
property that every
embedding X ↪ X
is an
equivalence.
Definition
is-dedekind-finite-set-Prop : {l : Level} → Set l → Prop l is-dedekind-finite-set-Prop X = Π-Prop ( type-Set X → type-Set X) ( λ f → function-Prop (is-emb f) (is-equiv-Prop f)) is-dedekind-finite-set : {l : Level} → Set l → UU l is-dedekind-finite-set X = type-Prop (is-dedekind-finite-set-Prop X) 𝔽-Dedekind : (l : Level) → UU (lsuc l) 𝔽-Dedekind l = Σ (Set l) is-dedekind-finite-set module _ {l : Level} (X : 𝔽-Dedekind l) where set-𝔽-Dedekind : Set l set-𝔽-Dedekind = pr1 X type-𝔽-Dedekind : UU l type-𝔽-Dedekind = type-Set set-𝔽-Dedekind is-set-type-𝔽-Dedekind : is-set type-𝔽-Dedekind is-set-type-𝔽-Dedekind = is-set-type-Set set-𝔽-Dedekind is-dedekind-finite-set-𝔽-Dedekind : is-dedekind-finite-set set-𝔽-Dedekind is-dedekind-finite-set-𝔽-Dedekind = pr2 X
See also
References
- [Sto87]
- Lawrence Neff Stout. Dedekind finiteness in topoi. Journal of Pure and Applied Algebra, 49(1):219–225, 1987. doi:10.1016/0022-4049(87)90130-7.
External links
- Finiteness in Sheaf Topoi, blog post by Chris Grossack
Fin.Dedekind
at TypeTopology- finite object#Dedekind finiteness
- finite set at Lab
- Dedekind-infinite set at Wikipedia
Recent changes
- 2024-09-23. Fredrik Bakke. Some typos, wording improvements, and brief prose additions (#1186).
- 2024-08-22. Fredrik Bakke. Cleanup of finite types (#1166).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490). - 2023-03-07. Jonathan Prieto-Cubides. Show module declarations (#488).