Geometric sequences in commutative rings
Content created by Louis Wasserman.
Created on 2025-11-07.
Last modified on 2025-11-10.
module commutative-algebra.geometric-sequences-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.commutative-semirings open import commutative-algebra.geometric-sequences-commutative-semirings open import commutative-algebra.groups-of-units-commutative-rings open import commutative-algebra.invertible-elements-commutative-rings open import commutative-algebra.powers-of-elements-commutative-rings open import commutative-algebra.sums-of-finite-sequences-of-elements-commutative-rings open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.arithmetic-sequences-semigroups open import lists.finite-sequences open import lists.sequences
Ideas
A geometric sequence¶ in a commutative ring is an geometric sequence in the ring’s multiplicative semigroup.
These are sequences of the form n ↦ a * rⁿ, for elements a, r in the ring.
Definitions
Geometric sequences in commutative rings
module _ {l : Level} (R : Commutative-Ring l) where geometric-sequence-Commutative-Ring : UU l geometric-sequence-Commutative-Ring = geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) is-geometric-sequence-Commutative-Ring : sequence (type-Commutative-Ring R) → UU l is-geometric-sequence-Commutative-Ring = is-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) module _ {l : Level} (R : Commutative-Ring l) (u : geometric-sequence-Commutative-Ring R) where seq-geometric-sequence-Commutative-Ring : ℕ → type-Commutative-Ring R seq-geometric-sequence-Commutative-Ring = seq-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( u) is-geometric-seq-geometric-sequence-Commutative-Ring : is-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( seq-geometric-sequence-Commutative-Ring) is-geometric-seq-geometric-sequence-Commutative-Ring = is-geometric-seq-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( u) common-ratio-geometric-sequence-Commutative-Ring : type-Commutative-Ring R common-ratio-geometric-sequence-Commutative-Ring = common-ratio-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( u) is-common-ratio-geometric-sequence-Commutative-Ring : ( n : ℕ) → ( seq-geometric-sequence-Commutative-Ring (succ-ℕ n)) = ( mul-Commutative-Ring ( R) ( seq-geometric-sequence-Commutative-Ring n) ( common-ratio-geometric-sequence-Commutative-Ring)) is-common-ratio-geometric-sequence-Commutative-Ring = is-common-ratio-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( u) initial-term-geometric-sequence-Commutative-Ring : type-Commutative-Ring R initial-term-geometric-sequence-Commutative-Ring = initial-term-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( u)
The standard geometric sequences in a commutative ring
The standard geometric sequence with initial term a and common factor r is
the sequence u defined by:
u₀ = auₙ₊₁ = uₙ * r
module _ {l : Level} (R : Commutative-Ring l) (a r : type-Commutative-Ring R) where standard-geometric-sequence-Commutative-Ring : geometric-sequence-Commutative-Ring R standard-geometric-sequence-Commutative-Ring = standard-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( a) ( r) seq-standard-geometric-sequence-Commutative-Ring : ℕ → type-Commutative-Ring R seq-standard-geometric-sequence-Commutative-Ring = seq-geometric-sequence-Commutative-Ring R standard-geometric-sequence-Commutative-Ring is-geometric-standard-geometric-sequence-Commutative-Ring : is-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( seq-standard-geometric-sequence-Commutative-Ring) is-geometric-standard-geometric-sequence-Commutative-Ring = is-geometric-seq-geometric-sequence-Commutative-Ring R standard-geometric-sequence-Commutative-Ring
The geometric sequences n ↦ a * rⁿ
module _ {l : Level} (R : Commutative-Ring l) (a r : type-Commutative-Ring R) where mul-pow-nat-Commutative-Ring : ℕ → type-Commutative-Ring R mul-pow-nat-Commutative-Ring n = mul-Commutative-Ring R a (power-Commutative-Ring R n r) geometric-mul-pow-nat-Commutative-Ring : geometric-sequence-Commutative-Ring R geometric-mul-pow-nat-Commutative-Ring = geometric-mul-pow-nat-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( a) ( r) initial-term-mul-pow-nat-Commutative-Ring : type-Commutative-Ring R initial-term-mul-pow-nat-Commutative-Ring = initial-term-geometric-sequence-Commutative-Ring ( R) ( geometric-mul-pow-nat-Commutative-Ring) eq-initial-term-mul-pow-nat-Commutative-Ring : initial-term-mul-pow-nat-Commutative-Ring = a eq-initial-term-mul-pow-nat-Commutative-Ring = right-unit-law-mul-Commutative-Ring R a
Properties
Any geometric sequence is homotopic to a standard geometric sequence
module _ {l : Level} (R : Commutative-Ring l) (u : geometric-sequence-Commutative-Ring R) where htpy-seq-standard-geometric-sequence-Commutative-Ring : ( seq-geometric-sequence-Commutative-Ring R ( standard-geometric-sequence-Commutative-Ring R ( initial-term-geometric-sequence-Commutative-Ring R u) ( common-ratio-geometric-sequence-Commutative-Ring R u))) ~ ( seq-geometric-sequence-Commutative-Ring R u) htpy-seq-standard-geometric-sequence-Commutative-Ring = htpy-seq-standard-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( u)
The nth term of a geometric sequence with initial term a and common ratio r is a * rⁿ
module _ {l : Level} (R : Commutative-Ring l) (a r : type-Commutative-Ring R) where htpy-mul-pow-standard-geometric-sequence-Commutative-Ring : mul-pow-nat-Commutative-Ring R a r ~ seq-standard-geometric-sequence-Commutative-Ring R a r htpy-mul-pow-standard-geometric-sequence-Commutative-Ring = htpy-mul-pow-standard-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( a) ( r) initial-term-standard-geometric-sequence-Commutative-Ring : seq-standard-geometric-sequence-Commutative-Ring R a r 0 = a initial-term-standard-geometric-sequence-Commutative-Ring = ( inv (htpy-mul-pow-standard-geometric-sequence-Commutative-Ring 0)) ∙ ( eq-initial-term-mul-pow-nat-Commutative-Ring R a r)
module _ {l : Level} (R : Commutative-Ring l) (u : geometric-sequence-Commutative-Ring R) where htpy-mul-pow-geometric-sequence-Commutative-Ring : mul-pow-nat-Commutative-Ring ( R) ( initial-term-geometric-sequence-Commutative-Ring R u) ( common-ratio-geometric-sequence-Commutative-Ring R u) ~ seq-geometric-sequence-Commutative-Ring R u htpy-mul-pow-geometric-sequence-Commutative-Ring n = ( htpy-mul-pow-standard-geometric-sequence-Commutative-Ring ( R) ( initial-term-geometric-sequence-Commutative-Ring R u) ( common-ratio-geometric-sequence-Commutative-Ring R u) ( n)) ∙ ( htpy-seq-standard-geometric-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( u) ( n))
Constant sequences are geometric with common ratio one
module _ {l : Level} (R : Commutative-Ring l) (a : type-Commutative-Ring R) where geometric-const-sequence-Commutative-Ring : geometric-sequence-Commutative-Ring R geometric-const-sequence-Commutative-Ring = geometric-const-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( a)
Finite geometric sequences
module _ {l : Level} (R : Commutative-Ring l) (a r : type-Commutative-Ring R) where standard-geometric-fin-sequence-Commutative-Ring : (n : ℕ) → fin-sequence (type-Commutative-Ring R) n standard-geometric-fin-sequence-Commutative-Ring = fin-sequence-sequence ( seq-standard-geometric-sequence-Commutative-Ring R a r) sum-standard-geometric-fin-sequence-Commutative-Ring : (n : ℕ) → type-Commutative-Ring R sum-standard-geometric-fin-sequence-Commutative-Ring = sum-standard-geometric-fin-sequence-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( a) ( r)
The sum of a finite geometric sequence
module _ {l : Level} (R : Commutative-Ring l) (a r : type-Commutative-Ring R) (let _*R_ = mul-Commutative-Ring R) (let _+R_ = add-Commutative-Ring R) (let _-R_ = right-subtraction-Commutative-Ring R) (let zero-R = zero-Commutative-Ring R) (let one-R = one-Commutative-Ring R) where abstract compute-sum-standard-geometric-fin-sequence-succ-Commutative-Ring : (n : ℕ) → sum-standard-geometric-fin-sequence-Commutative-Ring R ( a) ( r) ( succ-ℕ n) = add-Commutative-Ring R ( a) ( mul-Commutative-Ring R ( r) ( sum-standard-geometric-fin-sequence-Commutative-Ring R a r n)) compute-sum-standard-geometric-fin-sequence-succ-Commutative-Ring = compute-sum-standard-geometric-fin-sequence-succ-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) ( a) ( r) abstract compute-sum-standard-geometric-fin-sequence-Commutative-Ring : (H : is-invertible-element-Commutative-Ring R ( right-subtraction-Commutative-Ring R (one-Commutative-Ring R) r)) → (n : ℕ) → sum-standard-geometric-fin-sequence-Commutative-Ring R a r n = mul-Commutative-Ring R ( mul-Commutative-Ring R ( a) ( inv-is-invertible-element-Commutative-Ring R H)) ( right-subtraction-Commutative-Ring R ( one-Commutative-Ring R) ( power-Commutative-Ring R n r)) compute-sum-standard-geometric-fin-sequence-Commutative-Ring (1/⟨1-r⟩ , H) 0 = inv ( equational-reasoning (a *R 1/⟨1-r⟩) *R (one-R -R one-R) = (a *R 1/⟨1-r⟩) *R zero-R by ap-mul-Commutative-Ring R ( refl) ( right-inverse-law-add-Commutative-Ring R one-R) = zero-R by right-zero-law-mul-Commutative-Ring R _) compute-sum-standard-geometric-fin-sequence-Commutative-Ring (1/⟨1-r⟩ , H) (succ-ℕ n) = equational-reasoning sum-standard-geometric-fin-sequence-Commutative-Ring R a r (succ-ℕ n) = sum-standard-geometric-fin-sequence-Commutative-Ring R a r n +R seq-standard-geometric-sequence-Commutative-Ring R a r n by cons-sum-fin-sequence-type-Commutative-Ring R ( n) ( standard-geometric-fin-sequence-Commutative-Ring R ( a) ( r) ( succ-ℕ n)) ( refl) = ( (a *R 1/⟨1-r⟩) *R (one-R -R power-Commutative-Ring R n r)) +R ( a *R power-Commutative-Ring R n r) by ap-add-Commutative-Ring R ( compute-sum-standard-geometric-fin-sequence-Commutative-Ring ( 1/⟨1-r⟩ , H) ( n)) ( inv ( htpy-mul-pow-standard-geometric-sequence-Commutative-Ring R ( a) ( r) ( n))) = ( a *R (1/⟨1-r⟩ *R (one-R -R power-Commutative-Ring R n r))) +R ( a *R (one-R *R power-Commutative-Ring R n r)) by ap-add-Commutative-Ring R ( associative-mul-Commutative-Ring R _ _ _) ( ap-mul-Commutative-Ring R ( refl) ( inv (left-unit-law-mul-Commutative-Ring R _))) = a *R ( (1/⟨1-r⟩ *R (one-R -R power-Commutative-Ring R n r)) +R (one-R *R power-Commutative-Ring R n r)) by inv (left-distributive-mul-add-Commutative-Ring R a _ _) = a *R ( ( 1/⟨1-r⟩ *R (one-R -R power-Commutative-Ring R n r)) +R ( (1/⟨1-r⟩ *R (one-R -R r)) *R power-Commutative-Ring R n r)) by ap-mul-Commutative-Ring R ( refl) ( ap-add-Commutative-Ring R ( refl) ( ap-mul-Commutative-Ring R (inv (pr2 H)) refl)) = a *R ( ( 1/⟨1-r⟩ *R (one-R -R power-Commutative-Ring R n r)) +R ( 1/⟨1-r⟩ *R ((one-R -R r) *R power-Commutative-Ring R n r))) by ap-mul-Commutative-Ring R ( refl) ( ap-add-Commutative-Ring R ( refl) ( associative-mul-Commutative-Ring R _ _ _)) = a *R ( 1/⟨1-r⟩ *R ( ( one-R -R power-Commutative-Ring R n r) +R ( (one-R -R r) *R power-Commutative-Ring R n r))) by ap-mul-Commutative-Ring R ( refl) ( inv (left-distributive-mul-add-Commutative-Ring R _ _ _)) = ( a *R 1/⟨1-r⟩) *R ( ( one-R -R power-Commutative-Ring R n r) +R ( (one-R -R r) *R power-Commutative-Ring R n r)) by inv (associative-mul-Commutative-Ring R _ _ _) = ( a *R 1/⟨1-r⟩) *R ( ( one-R -R power-Commutative-Ring R n r) +R ( (one-R *R power-Commutative-Ring R n r) -R (r *R power-Commutative-Ring R n r))) by ap-mul-Commutative-Ring R ( refl) ( ap-add-Commutative-Ring R ( refl) ( right-distributive-mul-right-subtraction-Commutative-Ring R ( _) ( _) ( _))) = ( a *R 1/⟨1-r⟩) *R ( ( one-R -R power-Commutative-Ring R n r) +R ( power-Commutative-Ring R n r -R power-Commutative-Ring R (succ-ℕ n) r)) by ap-mul-Commutative-Ring R ( refl) ( ap-add-Commutative-Ring R ( refl) ( ap-right-subtraction-Commutative-Ring R ( left-unit-law-mul-Commutative-Ring R _) ( inv (power-succ-Commutative-Ring' R n r)))) = ( a *R 1/⟨1-r⟩) *R ( one-R -R power-Commutative-Ring R (succ-ℕ n) r) by ap-mul-Commutative-Ring R ( refl) ( add-right-subtraction-Commutative-Ring R _ _ _)
Recent changes
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).
- 2025-11-07. Louis Wasserman. Formula for sums of finite geometric series in the rational numbers (#1610).