Precategory solver

Content created by Fredrik Bakke, Egbert Rijke, Julian KG, fernabnor and louismntnu.

Created on 2023-05-06.
Last modified on 2024-02-07.

{-# OPTIONS --no-exact-split #-}

module reflection.precategory-solver where
Imports
open import category-theory.precategories

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.unit-type
open import foundation.universe-levels

open import lists.concatenation-lists
open import lists.lists

open import reflection.arguments
open import reflection.terms
open import reflection.type-checking-monad

Idea

This module defines a macro, solve-Precategory! that solves any equation between morphisms of a precategory, as long as it’s derivable from the axioms of precategories.

To do this, we introduce the type Precategory-Expression, which is a syntactic representation of a morphism. Then, noting that every morphism is represented by an expression (through in-Precategory-Expression), it will be sufficient to prove an equality of expresions to prove an equality of morphisms. However, if two morphisms are equal, then their normalized expressions are equal by reflexivity, so that the problem is reduced to finding which Precategory-Expression represents a given morphism.

This last problem, as well as the application of the solve-Precategory-Expression lemma, is what the macro automates.

Definition

The syntactic representation of a morphism

module _
  {l1 l2 : Level}
  (C : Precategory l1 l2)
  where

  data
    Precategory-Expression :
      obj-Precategory C  obj-Precategory C  UU (l1  l2)
    where
    id-hom-Precategory-Expression :
      {x : obj-Precategory C}  Precategory-Expression x x
    hom-Precategory-Expression :
      {x y : obj-Precategory C} 
      hom-Precategory C x y  Precategory-Expression x y
    comp-hom-Precategory-Expression :
      {x y z : obj-Precategory C} 
      Precategory-Expression y z 
      Precategory-Expression x y 
      Precategory-Expression x z

The syntactic representation of a morphism

  in-Precategory-Expression :
    {x y : obj-Precategory C} 
    Precategory-Expression x y 
    hom-Precategory C x y
  in-Precategory-Expression id-hom-Precategory-Expression = id-hom-Precategory C
  in-Precategory-Expression (hom-Precategory-Expression f) = f
  in-Precategory-Expression (comp-hom-Precategory-Expression f g) =
    comp-hom-Precategory C
      ( in-Precategory-Expression f)
      ( in-Precategory-Expression g)

The normalization of the syntactic representation of a morphism

  eval-Precategory-Expression :
    {x y z : obj-Precategory C} 
    Precategory-Expression y z 
    hom-Precategory C x y 
    hom-Precategory C x z
  eval-Precategory-Expression id-hom-Precategory-Expression f = f
  eval-Precategory-Expression (hom-Precategory-Expression f) g =
    comp-hom-Precategory C f g
  eval-Precategory-Expression (comp-hom-Precategory-Expression f g) h =
    eval-Precategory-Expression f (eval-Precategory-Expression g h)

  is-sound-eval-Precategory-Expression :
    {x y z : obj-Precategory C}
    (e : Precategory-Expression y z)
    (f : hom-Precategory C x y) 
    ( eval-Precategory-Expression e f) 
    ( comp-hom-Precategory C (in-Precategory-Expression e) f)
  is-sound-eval-Precategory-Expression id-hom-Precategory-Expression f =
    inv (left-unit-law-comp-hom-Precategory C f)
  is-sound-eval-Precategory-Expression (hom-Precategory-Expression f) g = refl
  is-sound-eval-Precategory-Expression (comp-hom-Precategory-Expression f g) h =
    ( is-sound-eval-Precategory-Expression
      ( f)
      ( eval-Precategory-Expression g h)) 
    ( ap
      ( comp-hom-Precategory C (in-Precategory-Expression f))
      ( is-sound-eval-Precategory-Expression g h)) 
    ( inv
      ( associative-comp-hom-Precategory
        C (in-Precategory-Expression f) (in-Precategory-Expression g) h))

  normalize-Precategory-Expression :
    {x y : obj-Precategory C} 
    Precategory-Expression x y 
    hom-Precategory C x y
  normalize-Precategory-Expression e =
    eval-Precategory-Expression e (id-hom-Precategory C)

  is-sound-normalize-Precategory-Expression :
    {x y : obj-Precategory C} 
    (e : Precategory-Expression x y) 
    normalize-Precategory-Expression e  in-Precategory-Expression e
  is-sound-normalize-Precategory-Expression e =
    ( is-sound-eval-Precategory-Expression e (id-hom-Precategory C)) 
    ( right-unit-law-comp-hom-Precategory C (in-Precategory-Expression e))

  abstract
    solve-Precategory-Expression :
      {x y : obj-Precategory C} 
      (f g : Precategory-Expression x y) 
      normalize-Precategory-Expression f  normalize-Precategory-Expression g 
      in-Precategory-Expression f  in-Precategory-Expression g
    solve-Precategory-Expression f g p =
      ( inv (is-sound-normalize-Precategory-Expression f)) 
      ( p) 
      ( is-sound-normalize-Precategory-Expression g)

The macro definition

The conversion of a morphism into an expression

private
  infixr 11 _∷_
  pattern _∷_ x xs = cons x xs
  _++_ : {l : Level} {A : UU l}  list A  list A  list A
  _++_ = concat-list
  infixr 10 _++_

  pattern apply-pr1 xs =
    definition-Term-Agda (quote pr1)
      ( hidden-Argument-Agda unknown-Term-Agda 
        hidden-Argument-Agda unknown-Term-Agda 
        hidden-Argument-Agda unknown-Term-Agda 
        hidden-Argument-Agda unknown-Term-Agda 
        xs)

  pattern apply-pr2 xs =
    definition-Term-Agda (quote pr2)
      ( hidden-Argument-Agda unknown-Term-Agda 
        hidden-Argument-Agda unknown-Term-Agda 
        hidden-Argument-Agda unknown-Term-Agda 
        hidden-Argument-Agda unknown-Term-Agda 
        xs)

Building a term of Precategory-Expression C x y from a term of type hom-Precategory C x y

build-Precategory-Expression : Term-Agda  Term-Agda
build-Precategory-Expression
  ( apply-pr1
    ( visible-Argument-Agda
      ( apply-pr2
        ( visible-Argument-Agda
          ( apply-pr2
            ( visible-Argument-Agda
              ( apply-pr2 (visible-Argument-Agda C  nil)) 
              ( nil))) 
            ( nil))) 
          ( visible-Argument-Agda x) 
          nil)) =
  constructor-Term-Agda (quote id-hom-Precategory-Expression) nil
build-Precategory-Expression
  ( apply-pr1
    ( visible-Argument-Agda
      ( apply-pr1
        ( visible-Argument-Agda
          ( apply-pr2
            ( visible-Argument-Agda
              ( apply-pr2
                (visible-Argument-Agda C  nil))  nil))
             nil)) 
      hidden-Argument-Agda x  hidden-Argument-Agda y  hidden-Argument-Agda z 
      visible-Argument-Agda g  visible-Argument-Agda f  nil)) =
  constructor-Term-Agda
    ( quote comp-hom-Precategory-Expression)
    ( visible-Argument-Agda (build-Precategory-Expression g) 
      visible-Argument-Agda (build-Precategory-Expression f) 
      nil)
build-Precategory-Expression f =
  constructor-Term-Agda
    ( quote hom-Precategory-Expression)
    ( visible-Argument-Agda f  nil)

The application of the solve-Precategory-Expression lemma

apply-solve-Precategory-Expression :
  Term-Agda  Term-Agda  Term-Agda  Term-Agda
apply-solve-Precategory-Expression cat lhs rhs =
  definition-Term-Agda
    ( quote solve-Precategory-Expression)
    ( replicate-hidden-Argument-Agda 2 ++
      visible-Argument-Agda cat 
      replicate-hidden-Argument-Agda 2 ++
      visible-Argument-Agda lhs 
      visible-Argument-Agda rhs 
      visible-Argument-Agda (constructor-Term-Agda (quote refl) nil) 
      nil)

The macro definition

macro
  solve-Precategory! : Term-Agda  Term-Agda  type-Type-Checker unit
  solve-Precategory! cat hole = do
    goal  infer-type hole >>= reduce
    (lhs , rhs)  boundary-Type-Checker goal
    built-lhs 
      normalize lhs >>= (return-Type-Checker  build-Precategory-Expression)
    built-rhs 
      normalize rhs >>= (return-Type-Checker  build-Precategory-Expression)
    unify hole (apply-solve-Precategory-Expression cat built-lhs built-rhs)

Examples

module _
  {l1 l2 : Level}
  {C : Precategory l1 l2}
  where

  private
    _ :
      {x y : obj-Precategory C}
      {f : hom-Precategory C x y} 
      f  f
    _ = solve-Precategory! C

    _ :
      {x : obj-Precategory C} 
      id-hom-Precategory C {x}  id-hom-Precategory C {x}
    _ = solve-Precategory! C

    _ :
      {a b c : obj-Precategory C}
      {f : hom-Precategory C a b}
      {g : hom-Precategory C b c} 
      (comp-hom-Precategory C g f) 
      comp-hom-Precategory C g f
    _ = solve-Precategory! C

    _ :
      {a b c d : obj-Precategory C}
      {f : hom-Precategory C a b}
      {g : hom-Precategory C b c} 
      {h : hom-Precategory C c d} 
      comp-hom-Precategory C h (comp-hom-Precategory C g f) 
      comp-hom-Precategory C (comp-hom-Precategory C h g) f
    _ = solve-Precategory! C

    _ :
      {a b c d : obj-Precategory C}
      {f : hom-Precategory C a b}
      {g : hom-Precategory C b c} 
      {h : hom-Precategory C c d} 
      comp-hom-Precategory C
        ( comp-hom-Precategory C h (id-hom-Precategory C))
        ( comp-hom-Precategory C g f) 
      comp-hom-Precategory C
        ( comp-hom-Precategory C h g)
        ( comp-hom-Precategory C (id-hom-Precategory C) f)
    _ = solve-Precategory! C

Recent changes