Precategory solver
Content created by Fredrik Bakke, Egbert Rijke, Julian KG, fernabnor and louismntnu.
Created on 2023-05-06.
Last modified on 2024-02-07.
{-# OPTIONS --no-exact-split #-} module reflection.precategory-solver where
Imports
open import category-theory.precategories open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.unit-type open import foundation.universe-levels open import lists.concatenation-lists open import lists.lists open import reflection.arguments open import reflection.terms open import reflection.type-checking-monad
Idea
This module defines a macro, solve-Precategory!
that solves any equation
between morphisms of a precategory, as long as it's derivable from the axioms of
precategories.
To do this, we introduce the type Precategory-Expression
, which is a syntactic
representation of a morphism. Then, noting that every morphism is represented by
an expression (through in-Precategory-Expression
), it will be sufficient to
prove an equality of expresions to prove an equality of morphisms. However, if
two morphisms are equal, then their normalized expressions are equal by
reflexivity, so that the problem is reduced to finding which
Precategory-Expression
represents a given morphism.
This last problem, as well as the application of the
solve-Precategory-Expression
lemma, is what the macro automates.
Definition
The syntactic representation of a morphism
module _ {l1 l2 : Level} (C : Precategory l1 l2) where data Precategory-Expression : obj-Precategory C → obj-Precategory C → UU (l1 ⊔ l2) where id-hom-Precategory-Expression : {x : obj-Precategory C} → Precategory-Expression x x hom-Precategory-Expression : {x y : obj-Precategory C} → hom-Precategory C x y → Precategory-Expression x y comp-hom-Precategory-Expression : {x y z : obj-Precategory C} → Precategory-Expression y z → Precategory-Expression x y → Precategory-Expression x z
The syntactic representation of a morphism
in-Precategory-Expression : {x y : obj-Precategory C} → Precategory-Expression x y → hom-Precategory C x y in-Precategory-Expression id-hom-Precategory-Expression = id-hom-Precategory C in-Precategory-Expression (hom-Precategory-Expression f) = f in-Precategory-Expression (comp-hom-Precategory-Expression f g) = comp-hom-Precategory C ( in-Precategory-Expression f) ( in-Precategory-Expression g)
The normalization of the syntactic representation of a morphism
eval-Precategory-Expression : {x y z : obj-Precategory C} → Precategory-Expression y z → hom-Precategory C x y → hom-Precategory C x z eval-Precategory-Expression id-hom-Precategory-Expression f = f eval-Precategory-Expression (hom-Precategory-Expression f) g = comp-hom-Precategory C f g eval-Precategory-Expression (comp-hom-Precategory-Expression f g) h = eval-Precategory-Expression f (eval-Precategory-Expression g h) is-sound-eval-Precategory-Expression : {x y z : obj-Precategory C} (e : Precategory-Expression y z) (f : hom-Precategory C x y) → ( eval-Precategory-Expression e f) = ( comp-hom-Precategory C (in-Precategory-Expression e) f) is-sound-eval-Precategory-Expression id-hom-Precategory-Expression f = inv (left-unit-law-comp-hom-Precategory C f) is-sound-eval-Precategory-Expression (hom-Precategory-Expression f) g = refl is-sound-eval-Precategory-Expression (comp-hom-Precategory-Expression f g) h = ( is-sound-eval-Precategory-Expression ( f) ( eval-Precategory-Expression g h)) ∙ ( ap ( comp-hom-Precategory C (in-Precategory-Expression f)) ( is-sound-eval-Precategory-Expression g h)) ∙ ( inv ( associative-comp-hom-Precategory C (in-Precategory-Expression f) (in-Precategory-Expression g) h)) normalize-Precategory-Expression : {x y : obj-Precategory C} → Precategory-Expression x y → hom-Precategory C x y normalize-Precategory-Expression e = eval-Precategory-Expression e (id-hom-Precategory C) is-sound-normalize-Precategory-Expression : {x y : obj-Precategory C} → (e : Precategory-Expression x y) → normalize-Precategory-Expression e = in-Precategory-Expression e is-sound-normalize-Precategory-Expression e = ( is-sound-eval-Precategory-Expression e (id-hom-Precategory C)) ∙ ( right-unit-law-comp-hom-Precategory C (in-Precategory-Expression e)) abstract solve-Precategory-Expression : {x y : obj-Precategory C} → (f g : Precategory-Expression x y) → normalize-Precategory-Expression f = normalize-Precategory-Expression g → in-Precategory-Expression f = in-Precategory-Expression g solve-Precategory-Expression f g p = ( inv (is-sound-normalize-Precategory-Expression f)) ∙ ( p) ∙ ( is-sound-normalize-Precategory-Expression g)
The macro definition
The conversion of a morphism into an expression
private infixr 11 _∷_ pattern _∷_ x xs = cons x xs _++_ : {l : Level} {A : UU l} → list A → list A → list A _++_ = concat-list infixr 10 _++_ pattern apply-pr1 xs = definition-Term-Agda (quote pr1) ( hidden-Argument-Agda unknown-Term-Agda ∷ hidden-Argument-Agda unknown-Term-Agda ∷ hidden-Argument-Agda unknown-Term-Agda ∷ hidden-Argument-Agda unknown-Term-Agda ∷ xs) pattern apply-pr2 xs = definition-Term-Agda (quote pr2) ( hidden-Argument-Agda unknown-Term-Agda ∷ hidden-Argument-Agda unknown-Term-Agda ∷ hidden-Argument-Agda unknown-Term-Agda ∷ hidden-Argument-Agda unknown-Term-Agda ∷ xs)
Building a term of Precategory-Expression C x y
from a term of type hom-Precategory C x y
build-Precategory-Expression : Term-Agda → Term-Agda build-Precategory-Expression ( apply-pr1 ( visible-Argument-Agda ( apply-pr2 ( visible-Argument-Agda ( apply-pr2 ( visible-Argument-Agda ( apply-pr2 (visible-Argument-Agda C ∷ nil)) ∷ ( nil))) ∷ ( nil))) ∷ ( visible-Argument-Agda x) ∷ nil)) = constructor-Term-Agda (quote id-hom-Precategory-Expression) nil build-Precategory-Expression ( apply-pr1 ( visible-Argument-Agda ( apply-pr1 ( visible-Argument-Agda ( apply-pr2 ( visible-Argument-Agda ( apply-pr2 (visible-Argument-Agda C ∷ nil)) ∷ nil)) ∷ nil)) ∷ hidden-Argument-Agda x ∷ hidden-Argument-Agda y ∷ hidden-Argument-Agda z ∷ visible-Argument-Agda g ∷ visible-Argument-Agda f ∷ nil)) = constructor-Term-Agda ( quote comp-hom-Precategory-Expression) ( visible-Argument-Agda (build-Precategory-Expression g) ∷ visible-Argument-Agda (build-Precategory-Expression f) ∷ nil) build-Precategory-Expression f = constructor-Term-Agda ( quote hom-Precategory-Expression) ( visible-Argument-Agda f ∷ nil)
The application of the solve-Precategory-Expression
lemma
apply-solve-Precategory-Expression : Term-Agda → Term-Agda → Term-Agda → Term-Agda apply-solve-Precategory-Expression cat lhs rhs = definition-Term-Agda ( quote solve-Precategory-Expression) ( replicate-hidden-Argument-Agda 2 ++ visible-Argument-Agda cat ∷ replicate-hidden-Argument-Agda 2 ++ visible-Argument-Agda lhs ∷ visible-Argument-Agda rhs ∷ visible-Argument-Agda (constructor-Term-Agda (quote refl) nil) ∷ nil)
The macro definition
macro solve-Precategory! : Term-Agda → Term-Agda → type-Type-Checker unit solve-Precategory! cat hole = do goal ← infer-type hole >>= reduce (lhs , rhs) ← boundary-Type-Checker goal built-lhs ← normalize lhs >>= (return-Type-Checker ∘ build-Precategory-Expression) built-rhs ← normalize rhs >>= (return-Type-Checker ∘ build-Precategory-Expression) unify hole (apply-solve-Precategory-Expression cat built-lhs built-rhs)
Examples
module _ {l1 l2 : Level} {C : Precategory l1 l2} where private _ : {x y : obj-Precategory C} {f : hom-Precategory C x y} → f = f _ = solve-Precategory! C _ : {x : obj-Precategory C} → id-hom-Precategory C {x} = id-hom-Precategory C {x} _ = solve-Precategory! C _ : {a b c : obj-Precategory C} {f : hom-Precategory C a b} {g : hom-Precategory C b c} → (comp-hom-Precategory C g f) = comp-hom-Precategory C g f _ = solve-Precategory! C _ : {a b c d : obj-Precategory C} {f : hom-Precategory C a b} {g : hom-Precategory C b c} → {h : hom-Precategory C c d} → comp-hom-Precategory C h (comp-hom-Precategory C g f) = comp-hom-Precategory C (comp-hom-Precategory C h g) f _ = solve-Precategory! C _ : {a b c d : obj-Precategory C} {f : hom-Precategory C a b} {g : hom-Precategory C b c} → {h : hom-Precategory C c d} → comp-hom-Precategory C ( comp-hom-Precategory C h (id-hom-Precategory C)) ( comp-hom-Precategory C g f) = comp-hom-Precategory C ( comp-hom-Precategory C h g) ( comp-hom-Precategory C (id-hom-Precategory C) f) _ = solve-Precategory! C
Recent changes
- 2024-02-07. Fredrik Bakke. Deduplicate definitions (#1022).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-10. Fredrik Bakke. Define precedence levels and associativities for all binary operators (#712).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).