Principal group actions
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Elisabeth Stenholm.
Created on 2022-03-17.
Last modified on 2023-11-24.
module group-theory.principal-group-actions where
Imports
open import foundation.dependent-pair-types open import foundation.equivalence-extensionality open import foundation.universe-levels open import group-theory.group-actions open import group-theory.groups
Idea
The principal group action is the action of a group on itself by multiplication from the left.
Definition
module _ {l1 : Level} (G : Group l1) where principal-action-Group : action-Group G l1 pr1 principal-action-Group = set-Group G pr1 (pr2 principal-action-Group) g = equiv-mul-Group G g pr2 (pr2 principal-action-Group) {g} {h} = eq-htpy-equiv (associative-mul-Group G g h)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-11-04. Fredrik Bakke. Small fixes concrete groups (#897).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).