Powers of rational numbers
Content created by Louis Wasserman.
Created on 2025-10-19.
Last modified on 2025-10-19.
module elementary-number-theory.powers-rational-numbers where
Imports
open import elementary-number-theory.absolute-value-rational-numbers open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.inequalities-positive-and-negative-rational-numbers open import elementary-number-theory.inequality-nonnegative-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.multiplication-nonnegative-rational-numbers open import elementary-number-theory.multiplication-positive-and-negative-rational-numbers open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-monoid-of-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.negative-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.parity-natural-numbers open import elementary-number-theory.positive-and-negative-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.powers-nonnegative-rational-numbers open import elementary-number-theory.powers-positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.squares-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import group-theory.powers-of-elements-commutative-monoids open import group-theory.powers-of-elements-monoids
Idea
The
power operation¶
on the rational numbers
n x ↦ xⁿ
, is defined by iteratively
multiplying x
with itself n
times.
Definition
power-ℚ : ℕ → ℚ → ℚ power-ℚ = power-Monoid monoid-mul-ℚ
Properties
The power operation on rational numbers agrees with the power operation on positive rational numbers
abstract power-rational-ℚ⁺ : (n : ℕ) (q : ℚ⁺) → power-ℚ n (rational-ℚ⁺ q) = rational-ℚ⁺ (power-ℚ⁺ n q) power-rational-ℚ⁺ 0 _ = refl power-rational-ℚ⁺ 1 _ = refl power-rational-ℚ⁺ (succ-ℕ n@(succ-ℕ _)) q = ap-mul-ℚ (power-rational-ℚ⁺ n q) refl
The power operation on rational numbers agrees with the power operation on nonnegative rational numbers
abstract power-rational-ℚ⁰⁺ : (n : ℕ) (q : ℚ⁰⁺) → power-ℚ n (rational-ℚ⁰⁺ q) = rational-ℚ⁰⁺ (power-ℚ⁰⁺ n q) power-rational-ℚ⁰⁺ 0 _ = refl power-rational-ℚ⁰⁺ 1 _ = refl power-rational-ℚ⁰⁺ (succ-ℕ n@(succ-ℕ _)) q = ap-mul-ℚ (power-rational-ℚ⁰⁺ n q) refl
1ⁿ = 1
abstract power-one-ℚ : (n : ℕ) → power-ℚ n one-ℚ = one-ℚ power-one-ℚ = power-unit-Monoid monoid-mul-ℚ
qⁿ⁺¹ = qⁿq
abstract power-succ-ℚ : (n : ℕ) (q : ℚ) → power-ℚ (succ-ℕ n) q = power-ℚ n q *ℚ q power-succ-ℚ = power-succ-Monoid monoid-mul-ℚ
qⁿ⁺¹ = qqⁿ
abstract power-succ-ℚ' : (n : ℕ) (q : ℚ) → power-ℚ (succ-ℕ n) q = q *ℚ power-ℚ n q power-succ-ℚ' = power-succ-Monoid' monoid-mul-ℚ
qᵐⁿ = qᵐqⁿ
abstract distributive-power-add-ℚ : (m n : ℕ) (q : ℚ) → power-ℚ (m +ℕ n) q = power-ℚ m q *ℚ power-ℚ n q distributive-power-add-ℚ m n _ = distributive-power-add-Monoid monoid-mul-ℚ m n
(pq)ⁿ=pⁿqⁿ
abstract left-distributive-power-mul-ℚ : (n : ℕ) (p q : ℚ) → power-ℚ n (p *ℚ q) = power-ℚ n p *ℚ power-ℚ n q left-distributive-power-mul-ℚ n p q = distributive-power-mul-Commutative-Monoid commutative-monoid-mul-ℚ n
pᵐⁿ = (pᵐ)ⁿ
abstract power-mul-ℚ : (m n : ℕ) (q : ℚ) → power-ℚ (m *ℕ n) q = power-ℚ n (power-ℚ m q) power-mul-ℚ m n q = power-mul-Monoid monoid-mul-ℚ m n power-mul-ℚ' : (m n : ℕ) (q : ℚ) → power-ℚ (m *ℕ n) q = power-ℚ m (power-ℚ n q) power-mul-ℚ' m n q = ap (λ k → power-ℚ k q) (commutative-mul-ℕ m n) ∙ power-mul-ℚ n m q
Even powers of rational numbers are nonnegative
abstract is-nonnegative-even-power-ℚ : (n : ℕ) (q : ℚ) → is-even-ℕ n → is-nonnegative-ℚ (power-ℚ n q) is-nonnegative-even-power-ℚ _ q (k , refl) = inv-tr ( is-nonnegative-ℚ) ( power-mul-ℚ k 2 q) ( is-nonnegative-square-ℚ (power-ℚ k q)) nonnegative-even-power-ℚ : (n : ℕ) (q : ℚ) → is-even-ℕ n → ℚ⁰⁺ nonnegative-even-power-ℚ n q even-n = ( power-ℚ n q , is-nonnegative-even-power-ℚ n q even-n)
Powers of positive rational numbers are positive
abstract is-positive-power-ℚ⁺ : (n : ℕ) (q : ℚ⁺) → is-positive-ℚ (power-ℚ n (rational-ℚ⁺ q)) is-positive-power-ℚ⁺ n q = inv-tr ( is-positive-ℚ) ( power-rational-ℚ⁺ n q) ( is-positive-rational-ℚ⁺ (power-ℚ⁺ n q))
Even powers of negative rational numbers are positive
abstract is-positive-even-power-ℚ⁻ : (n : ℕ) (q : ℚ⁻) → is-even-ℕ n → is-positive-ℚ (power-ℚ n (rational-ℚ⁻ q)) is-positive-even-power-ℚ⁻ _ q⁻@(q , is-neg-q) (k , refl) = inv-tr ( is-positive-ℚ) ( power-mul-ℚ' k 2 q) ( is-positive-power-ℚ⁺ k (square-ℚ⁻ q⁻))
Odd powers of negative rational numbers are negative
abstract is-negative-odd-power-ℚ⁻ : (n : ℕ) (q : ℚ⁻) → is-odd-ℕ n → is-negative-ℚ (power-ℚ n (rational-ℚ⁻ q)) is-negative-odd-power-ℚ⁻ n q⁻@(q , is-neg-q) odd-n = let (k , k2+1=n) = has-odd-expansion-is-odd n odd-n in tr ( is-negative-ℚ) ( equational-reasoning power-ℚ (k *ℕ 2) q *ℚ q = power-ℚ (succ-ℕ (k *ℕ 2)) q by inv (power-succ-ℚ (k *ℕ 2) q) = power-ℚ n q by ap (λ m → power-ℚ m q) k2+1=n) ( is-negative-mul-positive-negative-ℚ ( is-positive-even-power-ℚ⁻ (k *ℕ 2) q⁻ (k , refl)) ( is-neg-q))
For even n
, (-q)ⁿ = qⁿ
abstract even-power-neg-ℚ : (n : ℕ) (q : ℚ) → is-even-ℕ n → power-ℚ n (neg-ℚ q) = power-ℚ n q even-power-neg-ℚ _ q (k , refl) = equational-reasoning power-ℚ (k *ℕ 2) (neg-ℚ q) = power-ℚ k (square-ℚ (neg-ℚ q)) by power-mul-ℚ' k 2 (neg-ℚ q) = power-ℚ k (square-ℚ q) by ap (power-ℚ k) (square-neg-ℚ q) = power-ℚ (k *ℕ 2) q by inv (power-mul-ℚ' k 2 q)
For odd n
, (-q)ⁿ = -(qⁿ)
abstract odd-power-neg-ℚ : (n : ℕ) (q : ℚ) → is-odd-ℕ n → power-ℚ n (neg-ℚ q) = neg-ℚ (power-ℚ n q) odd-power-neg-ℚ n q odd-n = let (k , k2+1=n) = has-odd-expansion-is-odd n odd-n in equational-reasoning power-ℚ n (neg-ℚ q) = power-ℚ (succ-ℕ (k *ℕ 2)) (neg-ℚ q) by ap (λ m → power-ℚ m (neg-ℚ q)) (inv k2+1=n) = power-ℚ (k *ℕ 2) (neg-ℚ q) *ℚ neg-ℚ q by power-succ-ℚ (k *ℕ 2) (neg-ℚ q) = power-ℚ (k *ℕ 2) q *ℚ neg-ℚ q by ap-mul-ℚ (even-power-neg-ℚ _ q (k , refl)) refl = neg-ℚ (power-ℚ (k *ℕ 2) q *ℚ q) by right-negative-law-mul-ℚ _ _ = neg-ℚ (power-ℚ (succ-ℕ (k *ℕ 2)) q) by ap neg-ℚ (inv (power-succ-ℚ (k *ℕ 2) q)) = neg-ℚ (power-ℚ n q) by ap (λ m → neg-ℚ (power-ℚ m q)) k2+1=n neg-odd-power-neg-ℚ : (n : ℕ) (q : ℚ) → is-odd-ℕ n → neg-ℚ (power-ℚ n (neg-ℚ q)) = power-ℚ n q neg-odd-power-neg-ℚ n q odd-n = ap neg-ℚ (odd-power-neg-ℚ n q odd-n) ∙ neg-neg-ℚ _ neg-odd-power-neg-ℚ⁻ : (n : ℕ) (q : ℚ⁻) → is-odd-ℕ n → neg-ℚ (rational-ℚ⁺ (power-ℚ⁺ n (neg-ℚ⁻ q))) = power-ℚ n (rational-ℚ⁻ q) neg-odd-power-neg-ℚ⁻ n q⁻@(q , _) odd-n = ap neg-ℚ (inv (power-rational-ℚ⁺ n _)) ∙ neg-odd-power-neg-ℚ n q odd-n
|q|ⁿ=|qⁿ|
abstract power-rational-abs-ℚ : (n : ℕ) (q : ℚ) → power-ℚ n (rational-abs-ℚ q) = rational-abs-ℚ (power-ℚ n q) power-rational-abs-ℚ 0 q = inv (ap rational-ℚ⁰⁺ (abs-rational-ℚ⁰⁺ one-ℚ⁰⁺)) power-rational-abs-ℚ 1 q = refl power-rational-abs-ℚ (succ-ℕ n@(succ-ℕ _)) q = equational-reasoning power-ℚ n (rational-abs-ℚ q) *ℚ rational-abs-ℚ q = rational-abs-ℚ (power-ℚ n q) *ℚ rational-abs-ℚ q by ap-mul-ℚ (power-rational-abs-ℚ n q) refl = rational-abs-ℚ (power-ℚ n q *ℚ q) by inv (rational-abs-mul-ℚ _ _)
If |p| ≤ |q|
, |pⁿ| ≤ |qⁿ|
abstract preserves-leq-abs-power-ℚ : (n : ℕ) (p q : ℚ) → leq-ℚ⁰⁺ (abs-ℚ p) (abs-ℚ q) → leq-ℚ⁰⁺ (abs-ℚ (power-ℚ n p)) (abs-ℚ (power-ℚ n q)) preserves-leq-abs-power-ℚ n p q |p|≤|q| = binary-tr ( leq-ℚ) ( inv (power-rational-ℚ⁰⁺ n (abs-ℚ p)) ∙ power-rational-abs-ℚ n p) ( inv (power-rational-ℚ⁰⁺ n (abs-ℚ q)) ∙ power-rational-abs-ℚ n q) ( preserves-leq-power-ℚ⁰⁺ n (abs-ℚ p) (abs-ℚ q) |p|≤|q|)
Odd powers of rational numbers preserve inequality
abstract preserves-leq-odd-power-ℚ : (n : ℕ) (p q : ℚ) → is-odd-ℕ n → leq-ℚ p q → leq-ℚ (power-ℚ n p) (power-ℚ n q) preserves-leq-odd-power-ℚ n p q odd-n p≤q = rec-coproduct ( λ is-neg-p → rec-coproduct ( λ is-neg-q → let p⁻ = (p , is-neg-p) q⁻ = (q , is-neg-q) in binary-tr ( leq-ℚ) ( neg-odd-power-neg-ℚ⁻ n p⁻ odd-n) ( neg-odd-power-neg-ℚ⁻ n q⁻ odd-n) ( neg-leq-ℚ ( preserves-leq-power-ℚ⁺ ( n) ( neg-ℚ⁻ q⁻) ( neg-ℚ⁻ p⁻) ( neg-leq-ℚ p≤q)))) ( λ is-nonneg-q → inv-tr ( leq-ℚ (power-ℚ n p)) ( power-rational-ℚ⁰⁺ n (q , is-nonneg-q)) ( leq-negative-nonnegative-ℚ ( power-ℚ n p , is-negative-odd-power-ℚ⁻ n (p , is-neg-p) odd-n) ( power-ℚ⁰⁺ n (q , is-nonneg-q)))) ( decide-is-negative-is-nonnegative-ℚ q)) ( λ is-nonneg-p → let p⁰⁺ = (p , is-nonneg-p) q⁰⁺ = (q , is-nonnegative-leq-ℚ⁰⁺ p⁰⁺ q p≤q) in binary-tr ( leq-ℚ) ( inv (power-rational-ℚ⁰⁺ n p⁰⁺)) ( inv (power-rational-ℚ⁰⁺ n q⁰⁺)) ( preserves-leq-power-ℚ⁰⁺ n p⁰⁺ q⁰⁺ p≤q)) ( decide-is-negative-is-nonnegative-ℚ p)
Odd powers of rational numbers preserve strict inequality
abstract preserves-le-odd-power-ℚ : (n : ℕ) (p q : ℚ) → is-odd-ℕ n → le-ℚ p q → le-ℚ (power-ℚ n p) (power-ℚ n q) preserves-le-odd-power-ℚ n p q odd-n p<q = rec-coproduct ( λ is-neg-p → rec-coproduct ( λ is-neg-q → let p⁻ = (p , is-neg-p) q⁻ = (q , is-neg-q) in binary-tr ( le-ℚ) ( neg-odd-power-neg-ℚ⁻ n p⁻ odd-n) ( neg-odd-power-neg-ℚ⁻ n q⁻ odd-n) ( neg-le-ℚ ( preserves-le-power-ℚ⁺ ( n) ( neg-ℚ⁻ q⁻) ( neg-ℚ⁻ p⁻) ( neg-le-ℚ p<q) ( is-nonzero-is-odd-ℕ odd-n)))) ( λ is-nonneg-q → inv-tr ( le-ℚ (power-ℚ n p)) ( power-rational-ℚ⁰⁺ n (q , is-nonneg-q)) ( le-negative-nonnegative-ℚ ( power-ℚ n p , is-negative-odd-power-ℚ⁻ n (p , is-neg-p) odd-n) ( power-ℚ⁰⁺ n (q , is-nonneg-q)))) ( decide-is-negative-is-nonnegative-ℚ q)) ( λ is-nonneg-p → let p⁰⁺ = (p , is-nonneg-p) q⁰⁺ = (q , is-nonnegative-le-ℚ⁰⁺ p⁰⁺ q p<q) in binary-tr ( le-ℚ) ( inv (power-rational-ℚ⁰⁺ n p⁰⁺)) ( inv (power-rational-ℚ⁰⁺ n q⁰⁺)) ( preserves-le-power-ℚ⁰⁺ n p⁰⁺ q⁰⁺ p<q (is-nonzero-is-odd-ℕ odd-n))) ( decide-is-negative-is-nonnegative-ℚ p)
See also
Recent changes
- 2025-10-19. Louis Wasserman. Powers of arbitrary rational numbers (#1608).