Exponential of Cauchy series of species of types

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Victor Blanchi.

Created on 2023-04-27.
Last modified on 2024-02-06.

module species.exponentials-cauchy-series-of-types where
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.functoriality-dependent-pair-types
open import foundation.type-arithmetic-cartesian-product-types
open import foundation.unit-type
open import foundation.universe-levels

open import species.cauchy-composition-species-of-types
open import species.cauchy-exponentials-species-of-types
open import species.cauchy-series-species-of-types
open import species.composition-cauchy-series-species-of-types
open import species.species-of-types


module _
  {l1 l2 l3 : Level}
  (S : species-types l1 l2)
  (X : UU l3)

  exponential-cauchy-series-species-types :
    UU (lsuc l1  l2  l3)
  exponential-cauchy-series-species-types =
    Σ ( UU l1)
      ( λ F  F  (Σ ( UU l1)  U  S U × (U  X))))


The exponential of a Cauchy series as a composition

  equiv-exponential-cauchy-series-composition-unit-species-types :
    composition-cauchy-series-species-types  _  unit) S X 
  equiv-exponential-cauchy-series-composition-unit-species-types =
    equiv-tot λ F  left-unit-law-product-is-contr is-contr-unit

The Cauchy series associated to the Cauchy exponential of S is equal to the exponential of its Cauchy series

  equiv-cauchy-series-cauchy-exponential-species-types :
    cauchy-series-species-types (cauchy-exponential-species-types S) X 
  equiv-cauchy-series-cauchy-exponential-species-types =
    ( equiv-exponential-cauchy-series-composition-unit-species-types) ∘e
    ( ( equiv-cauchy-series-composition-species-types  _  unit) S X) ∘e
      ( equiv-cauchy-series-equiv-species-types
        ( cauchy-exponential-species-types S)
        ( cauchy-composition-species-types  _  unit) S)
        ( λ F 
            ( equiv-cauchy-exponential-composition-unit-species-types S F))
            ( X)))

Recent changes