Trivial rings

Content created by Egbert Rijke, Fredrik Bakke, Fernando Chu and malarbol.

Created on 2023-03-27.
Last modified on 2024-04-25.

module ring-theory.trivial-rings where
Imports
open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-functions
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.negated-equality
open import foundation.negation
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

open import ring-theory.invertible-elements-rings
open import ring-theory.rings

Idea

Trivial rings are rings in which 0 = 1.

Definition

is-trivial-ring-Prop : {l : Level}  Ring l  Prop l
is-trivial-ring-Prop R =
  Id-Prop (set-Ring R) (zero-Ring R) (one-Ring R)

is-trivial-Ring : {l : Level}  Ring l  UU l
is-trivial-Ring R = type-Prop (is-trivial-ring-Prop R)

is-prop-is-trivial-Ring :
  {l : Level} (R : Ring l)  is-prop (is-trivial-Ring R)
is-prop-is-trivial-Ring R = is-prop-type-Prop (is-trivial-ring-Prop R)

is-nontrivial-ring-Prop : {l : Level}  Ring l  Prop l
is-nontrivial-ring-Prop R =
  neg-Prop (is-trivial-ring-Prop R)

is-nontrivial-Ring : {l : Level}  Ring l  UU l
is-nontrivial-Ring R = type-Prop (is-nontrivial-ring-Prop R)

is-prop-is-nontrivial-Ring :
  {l : Level} (R : Ring l)  is-prop (is-nontrivial-Ring R)
is-prop-is-nontrivial-Ring R = is-prop-type-Prop (is-nontrivial-ring-Prop R)

Properties

The carrier type of a trivial ring is contractible

is-contr-is-trivial-Ring :
  {l : Level} (R : Ring l) 
  is-trivial-Ring R 
  is-contr (type-Ring R)
pr1 (is-contr-is-trivial-Ring R p) = zero-Ring R
pr2 (is-contr-is-trivial-Ring R p) x =
  equational-reasoning
    zero-Ring R
       mul-Ring R (zero-Ring R) x
        by inv (left-zero-law-mul-Ring R x)
       mul-Ring R (one-Ring R) x
        by ap-binary (mul-Ring R) p refl
       x
        by left-unit-law-mul-Ring R x

Invertible elements of nontrivial rings are not equal to zero

module _
  {l : Level} (R : Ring l) (H : is-nontrivial-Ring R) (x : type-Ring R)
  where

  is-nonzero-is-invertible-element-nontrivial-Ring :
    is-invertible-element-Ring R x  zero-Ring R  x
  is-nonzero-is-invertible-element-nontrivial-Ring (y , P , _) K =
    H ( ( inv (left-zero-law-mul-Ring R y)) 
        ( ap (mul-Ring' R y) K) 
        ( P))

Recent changes