Trivial rings
Content created by Egbert Rijke, Fredrik Bakke, Fernando Chu and malarbol.
Created on 2023-03-27.
Last modified on 2024-04-25.
module ring-theory.trivial-rings where
Imports
open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.negated-equality open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import ring-theory.invertible-elements-rings open import ring-theory.rings
Idea
Trivial rings are rings in which 0 = 1
.
Definition
is-trivial-ring-Prop : {l : Level} → Ring l → Prop l is-trivial-ring-Prop R = Id-Prop (set-Ring R) (zero-Ring R) (one-Ring R) is-trivial-Ring : {l : Level} → Ring l → UU l is-trivial-Ring R = type-Prop (is-trivial-ring-Prop R) is-prop-is-trivial-Ring : {l : Level} (R : Ring l) → is-prop (is-trivial-Ring R) is-prop-is-trivial-Ring R = is-prop-type-Prop (is-trivial-ring-Prop R) is-nontrivial-ring-Prop : {l : Level} → Ring l → Prop l is-nontrivial-ring-Prop R = neg-Prop (is-trivial-ring-Prop R) is-nontrivial-Ring : {l : Level} → Ring l → UU l is-nontrivial-Ring R = type-Prop (is-nontrivial-ring-Prop R) is-prop-is-nontrivial-Ring : {l : Level} (R : Ring l) → is-prop (is-nontrivial-Ring R) is-prop-is-nontrivial-Ring R = is-prop-type-Prop (is-nontrivial-ring-Prop R)
Properties
The carrier type of a trivial ring is contractible
is-contr-is-trivial-Ring : {l : Level} (R : Ring l) → is-trivial-Ring R → is-contr (type-Ring R) pr1 (is-contr-is-trivial-Ring R p) = zero-Ring R pr2 (is-contr-is-trivial-Ring R p) x = equational-reasoning zero-Ring R = mul-Ring R (zero-Ring R) x by inv (left-zero-law-mul-Ring R x) = mul-Ring R (one-Ring R) x by ap-binary (mul-Ring R) p refl = x by left-unit-law-mul-Ring R x
Invertible elements of nontrivial rings are not equal to zero
module _ {l : Level} (R : Ring l) (H : is-nontrivial-Ring R) (x : type-Ring R) where is-nonzero-is-invertible-element-nontrivial-Ring : is-invertible-element-Ring R x → zero-Ring R ≠ x is-nonzero-is-invertible-element-nontrivial-Ring (y , P , _) K = H ( ( inv (left-zero-law-mul-Ring R y)) ∙ ( ap (mul-Ring' R y) K) ∙ ( P))
Recent changes
- 2024-04-25. malarbol and Fredrik Bakke. The discrete field of rational numbers (#1111).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-06. Egbert Rijke. Big cleanup throughout library (#594).
- 2023-03-27. Fernando Chu. Change integral domains definition (#545).