Symmetric higher groups
Content created by Egbert Rijke.
Created on 2023-04-10.
Last modified on 2023-04-10.
module higher-group-theory.symmetric-higher-groups where
Imports
open import foundation.0-connected-types open import foundation.connected-components-universes open import foundation.dependent-pair-types open import foundation.mere-equivalences open import foundation.universe-levels open import higher-group-theory.higher-groups open import structured-types.pointed-types
Idea
The symmetric higher group of a type X
is the connected component of the
universe at X
.
Definition
module _ {l : Level} (X : UU l) where classifying-type-symmetric-∞-Group : UU (lsuc l) classifying-type-symmetric-∞-Group = component-UU X shape-symmetric-∞-Group : classifying-type-symmetric-∞-Group shape-symmetric-∞-Group = pair X (refl-mere-equiv X) classifying-pointed-type-symmetric-∞-Group : Pointed-Type (lsuc l) classifying-pointed-type-symmetric-∞-Group = pair classifying-type-symmetric-∞-Group shape-symmetric-∞-Group is-0-connected-classifying-type-symmetric-∞-Group : is-0-connected classifying-type-symmetric-∞-Group is-0-connected-classifying-type-symmetric-∞-Group = is-0-connected-component-UU X symmetric-∞-Group : ∞-Group (lsuc l) symmetric-∞-Group = pair classifying-pointed-type-symmetric-∞-Group is-0-connected-classifying-type-symmetric-∞-Group
Recent changes
- 2023-04-10. Egbert Rijke. Factoring out higher group theory (#559).