Finite semigroups
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-03-24.
Last modified on 2024-08-22.
module finite-group-theory.finite-semigroups where
Imports
open import elementary-number-theory.natural-numbers open import foundation.decidable-propositions open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.mere-equivalences open import foundation.propositions open import foundation.set-truncations open import foundation.sets open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import group-theory.semigroups open import univalent-combinatorics.dependent-function-types open import univalent-combinatorics.dependent-pair-types open import univalent-combinatorics.equality-finite-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.finitely-many-connected-components open import univalent-combinatorics.function-types open import univalent-combinatorics.pi-finite-types open import univalent-combinatorics.standard-finite-types
Idea
Finite semigroups are semigroups of which the underlying type is finite.
Definitions
The predicate of having an associative multiplication operation on finite types
has-associative-mul-𝔽 : {l : Level} (X : 𝔽 l) → UU l has-associative-mul-𝔽 X = has-associative-mul (type-𝔽 X)
Finite semigroups
Semigroup-𝔽 : (l : Level) → UU (lsuc l) Semigroup-𝔽 l = Σ (𝔽 l) (has-associative-mul-𝔽) module _ {l : Level} (G : Semigroup-𝔽 l) where finite-type-Semigroup-𝔽 : 𝔽 l finite-type-Semigroup-𝔽 = pr1 G set-Semigroup-𝔽 : Set l set-Semigroup-𝔽 = set-𝔽 finite-type-Semigroup-𝔽 type-Semigroup-𝔽 : UU l type-Semigroup-𝔽 = type-𝔽 finite-type-Semigroup-𝔽 is-finite-type-Semigroup-𝔽 : is-finite type-Semigroup-𝔽 is-finite-type-Semigroup-𝔽 = is-finite-type-𝔽 finite-type-Semigroup-𝔽 is-set-type-Semigroup-𝔽 : is-set type-Semigroup-𝔽 is-set-type-Semigroup-𝔽 = is-set-type-𝔽 finite-type-Semigroup-𝔽 has-associative-mul-Semigroup-𝔽 : has-associative-mul type-Semigroup-𝔽 has-associative-mul-Semigroup-𝔽 = pr2 G semigroup-Semigroup-𝔽 : Semigroup l pr1 semigroup-Semigroup-𝔽 = set-Semigroup-𝔽 pr2 semigroup-Semigroup-𝔽 = has-associative-mul-Semigroup-𝔽 mul-Semigroup-𝔽 : type-Semigroup-𝔽 → type-Semigroup-𝔽 → type-Semigroup-𝔽 mul-Semigroup-𝔽 = mul-Semigroup semigroup-Semigroup-𝔽 mul-Semigroup-𝔽' : type-Semigroup-𝔽 → type-Semigroup-𝔽 → type-Semigroup-𝔽 mul-Semigroup-𝔽' = mul-Semigroup' semigroup-Semigroup-𝔽 associative-mul-Semigroup-𝔽 : (x y z : type-Semigroup-𝔽) → ( mul-Semigroup-𝔽 (mul-Semigroup-𝔽 x y) z) = ( mul-Semigroup-𝔽 x (mul-Semigroup-𝔽 y z)) associative-mul-Semigroup-𝔽 = associative-mul-Semigroup semigroup-Semigroup-𝔽 finite-semigroup-is-finite-Semigroup : {l : Level} → (G : Semigroup l) → is-finite (type-Semigroup G) → Semigroup-𝔽 l pr1 (pr1 (finite-semigroup-is-finite-Semigroup G f)) = type-Semigroup G pr2 (pr1 (finite-semigroup-is-finite-Semigroup G f)) = f pr2 (finite-semigroup-is-finite-Semigroup G f) = has-associative-mul-Semigroup G module _ {l : Level} (G : Semigroup-𝔽 l) where ap-mul-Semigroup-𝔽 : {x x' y y' : type-Semigroup-𝔽 G} → x = x' → y = y' → mul-Semigroup-𝔽 G x y = mul-Semigroup-𝔽 G x' y' ap-mul-Semigroup-𝔽 = ap-mul-Semigroup (semigroup-Semigroup-𝔽 G)
Semigroups of order n
Semigroup-of-Order' : (l : Level) (n : ℕ) → UU (lsuc l) Semigroup-of-Order' l n = Σ ( UU-Fin l n) ( λ X → has-associative-mul (type-UU-Fin n X)) Semigroup-of-Order : (l : Level) (n : ℕ) → UU (lsuc l) Semigroup-of-Order l n = Σ (Semigroup l) (λ G → mere-equiv (Fin n) (type-Semigroup G))
Properties
If X
is finite, then there are finitely many associative operations on X
is-finite-has-associative-mul : {l : Level} {X : UU l} → is-finite X → is-finite (has-associative-mul X) is-finite-has-associative-mul H = is-finite-Σ ( is-finite-function-type H (is-finite-function-type H H)) ( λ μ → is-finite-Π H ( λ x → is-finite-Π H ( λ y → is-finite-Π H ( λ z → is-finite-eq (has-decidable-equality-is-finite H)))))
The type of semigroups of order n
is π-finite
is-π-finite-Semigroup-of-Order' : {l : Level} (k n : ℕ) → is-π-finite k (Semigroup-of-Order' l n) is-π-finite-Semigroup-of-Order' k n = is-π-finite-Σ k ( is-π-finite-UU-Fin (succ-ℕ k) n) ( λ x → is-π-finite-is-finite k ( is-finite-has-associative-mul ( is-finite-type-UU-Fin n x))) is-π-finite-Semigroup-of-Order : {l : Level} (k n : ℕ) → is-π-finite k (Semigroup-of-Order l n) is-π-finite-Semigroup-of-Order {l} k n = is-π-finite-equiv k e ( is-π-finite-Semigroup-of-Order' k n) where e : Semigroup-of-Order l n ≃ Semigroup-of-Order' l n e = ( equiv-Σ ( has-associative-mul ∘ type-UU-Fin n) ( ( right-unit-law-Σ-is-contr ( λ X → is-proof-irrelevant-is-prop ( is-prop-is-set _) ( is-set-is-finite (is-finite-has-cardinality n (pr2 X))))) ∘e ( equiv-right-swap-Σ)) ( λ X → id-equiv)) ∘e ( equiv-right-swap-Σ { A = Set l} { B = has-associative-mul-Set} { C = mere-equiv (Fin n) ∘ type-Set})
The function that returns for each n
the number of semigroups of order n
up to isomorphism
number-of-semi-groups-of-order : ℕ → ℕ number-of-semi-groups-of-order n = number-of-connected-components ( is-π-finite-Semigroup-of-Order {lzero} zero-ℕ n) mere-equiv-number-of-semi-groups-of-order : (n : ℕ) → mere-equiv ( Fin (number-of-semi-groups-of-order n)) ( type-trunc-Set (Semigroup-of-Order lzero n)) mere-equiv-number-of-semi-groups-of-order n = mere-equiv-number-of-connected-components ( is-π-finite-Semigroup-of-Order {lzero} zero-ℕ n)
There is a finite number of ways to equip a finite type with the structure of a semigroup
structure-semigroup-𝔽 : {l1 : Level} → 𝔽 l1 → UU l1 structure-semigroup-𝔽 = has-associative-mul-𝔽 is-finite-structure-semigroup-𝔽 : {l : Level} → (X : 𝔽 l) → is-finite (structure-semigroup-𝔽 X) is-finite-structure-semigroup-𝔽 X = is-finite-Σ ( is-finite-Π ( is-finite-type-𝔽 X) ( λ _ → is-finite-Π (is-finite-type-𝔽 X) (λ _ → is-finite-type-𝔽 X))) ( λ m → is-finite-Π ( is-finite-type-𝔽 X) ( λ x → is-finite-Π ( is-finite-type-𝔽 X) ( λ y → is-finite-Π ( is-finite-type-𝔽 X) ( λ z → is-finite-is-decidable-Prop ( (m (m x y) z = m x (m y z)) , is-set-is-finite ( is-finite-type-𝔽 X) ( m (m x y) z) ( m x (m y z))) ( has-decidable-equality-is-finite ( is-finite-type-𝔽 X) ( m (m x y) z) ( m x (m y z)))))))
Recent changes
- 2024-08-22. Fredrik Bakke. Cleanup of finite types (#1166).
- 2024-02-07. Fredrik Bakke. Deduplicate definitions (#1022).
- 2023-10-16. Fredrik Bakke. The simplex precategory (#845).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-04-08. Egbert Rijke. Refactoring elementary number theory files (#546).