Principal lower sets of large posets
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module order-theory.principal-lower-sets-large-posets where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-subposets open import order-theory.large-subpreorders open import order-theory.similarity-of-elements-large-posets
Idea
The principal lower set ↓{x}
of an element x
of a
large poset P
is the
large subposet consisting of all elements
y ≤ x
in P
.
Two elements x
and y
in a large poset P
are
similar if and only if
they have the same principal lower sets, and if x
and y
are of the same
universe level, then x
and y
are equal if
and only if they have the same principal lower sets. To see this, note that if
↓{x} = ↓{y}
, then we have the implications (x ≤ x) → (x ≤ y)
and
(y ≤ y) → (y ≤ x)
.
Definitions
The predicate of being a principal lower set of an element
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 : Level} (x : type-Large-Poset P l1) {γ : Level → Level} (S : Large-Subposet γ P) where is-principal-lower-set-Large-Subposet : UUω is-principal-lower-set-Large-Subposet = {l : Level} (y : type-Large-Poset P l) → leq-Large-Poset P y x ↔ is-in-Large-Subposet P S y
The principal lower set of an element
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 : Level} (x : type-Large-Poset P l1) where large-subpreorder-principal-lower-set-element-Large-Poset : Large-Subpreorder (λ l → β l l1) (large-preorder-Large-Poset P) large-subpreorder-principal-lower-set-element-Large-Poset y = leq-prop-Large-Poset P y x is-closed-under-sim-principal-lower-set-element-Large-Poset : is-closed-under-sim-Large-Subpreorder P ( large-subpreorder-principal-lower-set-element-Large-Poset) is-closed-under-sim-principal-lower-set-element-Large-Poset y z p q l = transitive-leq-Large-Poset P z y x l q principal-lower-set-element-Large-Poset : Large-Subposet (λ l → β l l1) P large-subpreorder-Large-Subposet principal-lower-set-element-Large-Poset = large-subpreorder-principal-lower-set-element-Large-Poset is-closed-under-sim-Large-Subposet principal-lower-set-element-Large-Poset = is-closed-under-sim-principal-lower-set-element-Large-Poset
Properties
The principal lower sets ↓{x}
and ↓{y}
have the same elements if and only if x
and y
are similar
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 l2 : Level} {x : type-Large-Poset P l1} {y : type-Large-Poset P l2} where sim-has-same-elements-principal-lower-set-element-Large-Poset : has-same-elements-Large-Subposet P ( principal-lower-set-element-Large-Poset P x) ( principal-lower-set-element-Large-Poset P y) → sim-Large-Poset P x y pr1 (sim-has-same-elements-principal-lower-set-element-Large-Poset H) = forward-implication (H x) (refl-leq-Large-Poset P x) pr2 (sim-has-same-elements-principal-lower-set-element-Large-Poset H) = backward-implication (H y) (refl-leq-Large-Poset P y) has-same-elements-principal-lower-set-element-sim-Large-Poset : sim-Large-Poset P x y → has-same-elements-Large-Subposet P ( principal-lower-set-element-Large-Poset P x) ( principal-lower-set-element-Large-Poset P y) pr1 ( has-same-elements-principal-lower-set-element-sim-Large-Poset (H , K) z) = transitive-leq-Large-Poset P z x y H pr2 ( has-same-elements-principal-lower-set-element-sim-Large-Poset (H , K) z) = transitive-leq-Large-Poset P z y x K
For two elements x
and y
of a large poset of the same universe level, if the principal lower sets ↓{x}
and ↓{y}
have the same elements, then x
and y
are equal
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 : Level} (x y : type-Large-Poset P l1) where eq-has-same-elements-principal-lower-set-element-Large-Poset : has-same-elements-Large-Subposet P ( principal-lower-set-element-Large-Poset P x) ( principal-lower-set-element-Large-Poset P y) → x = y eq-has-same-elements-principal-lower-set-element-Large-Poset H = antisymmetric-leq-Large-Poset P x y ( pr1 (sim-has-same-elements-principal-lower-set-element-Large-Poset P H)) ( pr2 (sim-has-same-elements-principal-lower-set-element-Large-Poset P H))
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).