Lawvere–Tierney topologies
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2024-11-05.
Last modified on 2024-11-05.
module orthogonal-factorization-systems.lawvere-tierney-topologies where
Imports
open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.function-types open import foundation.logical-equivalences open import foundation.propositional-extensionality open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.unit-type open import foundation.universe-levels
Idea
A (small) {#concept “Lawvere–Tierney topology” Disambiguation=“on types”} on types is a map
j : Prop → Prop
that is idempotent and preserves the unit type and binary products
j (j P) ≃ j P j unit ≃ unit j (P ∧ Q) ≃ j P ∧ j Q
such operations give rise to a notion of j
-sheaves of types.
Definitions
The predicate on an operator on propositions of defining a Lawvere-Tierney topology
module _ {l : Level} (j : Prop l → Prop l) where is-lawvere-tierney-topology-Prop : Prop (lsuc l) is-lawvere-tierney-topology-Prop = product-Prop ( Π-Prop (Prop l) (λ P → j (j P) ⇔ j P)) ( product-Prop ( j (raise-unit-Prop l) ⇔ unit-Prop) ( Π-Prop ( Prop l) ( λ P → Π-Prop (Prop l) (λ Q → j (P ∧ Q) ⇔ j P ∧ j Q)))) is-lawvere-tierney-topology : UU (lsuc l) is-lawvere-tierney-topology = type-Prop is-lawvere-tierney-topology-Prop is-prop-is-lawvere-tierney-topology : is-prop is-lawvere-tierney-topology is-prop-is-lawvere-tierney-topology = is-prop-type-Prop is-lawvere-tierney-topology-Prop
The set of Lawvere-Tierney topologies
lawvere-tierney-topology : (l : Level) → UU (lsuc l) lawvere-tierney-topology l = Σ (Prop l → Prop l) (is-lawvere-tierney-topology) is-set-lawvere-tierney-topology : {l : Level} → is-set (lawvere-tierney-topology l) is-set-lawvere-tierney-topology = is-set-type-subtype is-lawvere-tierney-topology-Prop (is-set-subtype) set-lawvere-tierney-topology : (l : Level) → Set (lsuc l) set-lawvere-tierney-topology l = (lawvere-tierney-topology l , is-set-lawvere-tierney-topology)
Examples
The identity function on propositions defines a Lawvere–Tierney topology
is-lawvere-tierney-topology-id : (l : Level) → (is-lawvere-tierney-topology (id {A = Prop l})) pr1 (is-lawvere-tierney-topology-id l) P = id-iff pr1 (pr2 (is-lawvere-tierney-topology-id l)) = iff-equiv (inv-compute-raise-unit l) pr2 (pr2 (is-lawvere-tierney-topology-id l)) Q P = id-iff id-lawvere-tierney-topology : (l : Level) → lawvere-tierney-topology l id-lawvere-tierney-topology l = (id , is-lawvere-tierney-topology-id l)
See also
- Large Lawvere-Tierney topologies
- The continuation modalities define Lawvere–Tierney topologies, and as a special case so does the double negation modality.
References
Lawvere–Tierney topologies in the context of Homotopy Type Theory are introduced and studied in Chapter 6 of [Qui16].
- [Qui16]
- Kevin Quirin. Lawvere–Tierney sheafification in Homotopy Type Theory. PhD thesis, École des Mines de Nantes, December 2016. URL: https://kevinquirin.github.io/thesis/main.pdf.
External links
- Lawvere–Tierney topology at Lab
Recent changes
- 2024-11-05. Fredrik Bakke and Egbert Rijke. Continuation modalities and Lawvere–Tierney topologies (#1157).