k
-acyclic types
Content created by Tom de Jong.
Created on 2023-11-27.
Last modified on 2023-12-04.
module synthetic-homotopy-theory.truncated-acyclic-types where
Imports
open import foundation.connected-types open import foundation.contractible-types open import foundation.equivalences open import foundation.propositions open import foundation.retracts-of-types open import foundation.truncation-levels open import foundation.unit-type open import foundation.universe-levels open import synthetic-homotopy-theory.functoriality-suspensions open import synthetic-homotopy-theory.suspensions-of-types
Idea
A type A
is said to be k
-acyclic if its
suspension is
k
-connected.
Definition
module _ {l : Level} (k : 𝕋) (A : UU l) where is-truncated-acyclic-Prop : Prop l is-truncated-acyclic-Prop = is-connected-Prop k (suspension A) is-truncated-acyclic : UU l is-truncated-acyclic = type-Prop is-truncated-acyclic-Prop is-prop-is-truncated-acyclic : is-prop is-truncated-acyclic is-prop-is-truncated-acyclic = is-prop-type-Prop is-truncated-acyclic-Prop
We use the name is-truncated-acyclic
instead of is-truncation-acyclic
,
because the latter, in line with
is-truncation-equivalence
, might
suggest that it is the truncation of a type that is acyclic which is not the
notion we’re interested in.
Properties
Being k
-acyclic is invariant under equivalence
is-truncated-acyclic-equiv : {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} → A ≃ B → is-truncated-acyclic k B → is-truncated-acyclic k A is-truncated-acyclic-equiv {k = k} {B = B} e ac = is-connected-equiv (equiv-suspension e) ac is-truncated-acyclic-equiv' : {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} → A ≃ B → is-truncated-acyclic k A → is-truncated-acyclic k B is-truncated-acyclic-equiv' e = is-truncated-acyclic-equiv (inv-equiv e)
k
-acyclic types are closed under retracts
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} where is-truncated-acyclic-retract-of : A retract-of B → is-truncated-acyclic k B → is-truncated-acyclic k A is-truncated-acyclic-retract-of R ac = is-connected-retract-of ( retract-of-suspension-retract-of R) ( ac)
Every k
-connected type is (k+1)
-acyclic
module _ {l : Level} {k : 𝕋} {A : UU l} where is-truncated-acyclic-succ-is-connected : is-connected k A → is-truncated-acyclic (succ-𝕋 k) A is-truncated-acyclic-succ-is-connected = is-connected-succ-suspension-is-connected
Contractible types are k
-acyclic for any k
is-truncated-acyclic-is-contr : {l : Level} {k : 𝕋} (A : UU l) → is-contr A → is-truncated-acyclic k A is-truncated-acyclic-is-contr {k = k} A c = is-connected-is-contr k (is-contr-suspension-is-contr c) is-truncated-acyclic-unit : {k : 𝕋} → is-truncated-acyclic k unit is-truncated-acyclic-unit = is-truncated-acyclic-is-contr unit is-contr-unit
Every (k+1)
-acyclic type is k
-acyclic
module _ {l : Level} {k : 𝕋} {A : UU l} where is-truncated-acyclic-is-truncated-acyclic-succ : is-truncated-acyclic (succ-𝕋 k) A → is-truncated-acyclic k A is-truncated-acyclic-is-truncated-acyclic-succ = is-connected-is-connected-succ-𝕋 k
See also
- Acyclic maps
- Acyclic types
- Dependent epimorphisms
- Epimorphisms
- Epimorphisms with respect to sets
- Epimorphisms with respect to truncated types
Recent changes
- 2023-12-04. Tom de Jong.
k
-acyclic maps/types closure properties (#967). - 2023-12-01. Tom de Jong. A type is
1
-acyclic if and only if it is0
-connected (#956). - 2023-11-29. Tom de Jong. Suspensions increase connectedness and relating
k
-acyclic maps,k
-equivalences andk
-connected maps (#951). - 2023-11-29. Tom de Jong. Comment on the name
is-truncated-acyclic
(#950). - 2023-11-27. Tom de Jong.
k
-acyclic types (#948).