Linear maps on left modules over commutative rings
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.linear-maps-left-modules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.left-modules-commutative-rings open import linear-algebra.linear-maps-left-modules-rings
Idea
A
linear map¶
from a left module M over
a commutative ring R to another
left module N over R is a map f with the following properties:
- Additivity:
f (a + b) = f a + f b - Homogeneity:
f (c * a) = c * f a
Definition
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (V : left-module-Commutative-Ring l2 R) (W : left-module-Commutative-Ring l3 R) (f : type-left-module-Commutative-Ring R V → type-left-module-Commutative-Ring R W) where is-additive-map-prop-left-module-Commutative-Ring : Prop (l2 ⊔ l3) is-additive-map-prop-left-module-Commutative-Ring = is-additive-map-prop-left-module-Ring ( ring-Commutative-Ring R) ( V) ( W) ( f) is-additive-map-left-module-Commutative-Ring : UU (l2 ⊔ l3) is-additive-map-left-module-Commutative-Ring = type-Prop is-additive-map-prop-left-module-Commutative-Ring is-homogeneous-map-prop-left-module-Commutative-Ring : Prop (l1 ⊔ l2 ⊔ l3) is-homogeneous-map-prop-left-module-Commutative-Ring = is-homogeneous-map-prop-left-module-Ring ( ring-Commutative-Ring R) ( V) ( W) ( f) is-homogeneous-map-left-module-Commutative-Ring : UU (l1 ⊔ l2 ⊔ l3) is-homogeneous-map-left-module-Commutative-Ring = type-Prop is-homogeneous-map-prop-left-module-Commutative-Ring is-linear-map-prop-left-module-Commutative-Ring : Prop (l1 ⊔ l2 ⊔ l3) is-linear-map-prop-left-module-Commutative-Ring = is-linear-map-prop-left-module-Ring ( ring-Commutative-Ring R) ( V) ( W) ( f) is-linear-map-left-module-Commutative-Ring : UU (l1 ⊔ l2 ⊔ l3) is-linear-map-left-module-Commutative-Ring = type-Prop is-linear-map-prop-left-module-Commutative-Ring linear-map-left-module-Commutative-Ring : {l1 l2 l3 : Level} (R : Commutative-Ring l1) → left-module-Commutative-Ring l2 R → left-module-Commutative-Ring l3 R → UU (l1 ⊔ l2 ⊔ l3) linear-map-left-module-Commutative-Ring R V W = type-subtype (is-linear-map-prop-left-module-Commutative-Ring R V W) module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (V : left-module-Commutative-Ring l2 R) (W : left-module-Commutative-Ring l3 R) (f : linear-map-left-module-Commutative-Ring R V W) where map-linear-map-left-module-Commutative-Ring : type-left-module-Commutative-Ring R V → type-left-module-Commutative-Ring R W map-linear-map-left-module-Commutative-Ring = pr1 f is-linear-map-linear-map-left-module-Commutative-Ring : is-linear-map-left-module-Commutative-Ring R V W ( map-linear-map-left-module-Commutative-Ring) is-linear-map-linear-map-left-module-Commutative-Ring = pr2 f is-additive-map-linear-map-left-module-Commutative-Ring : is-additive-map-left-module-Commutative-Ring R V W ( map-linear-map-left-module-Commutative-Ring) is-additive-map-linear-map-left-module-Commutative-Ring = pr1 is-linear-map-linear-map-left-module-Commutative-Ring is-homogeneous-map-linear-map-left-module-Commutative-Ring : is-homogeneous-map-left-module-Commutative-Ring R V W ( map-linear-map-left-module-Commutative-Ring) is-homogeneous-map-linear-map-left-module-Commutative-Ring = pr2 is-linear-map-linear-map-left-module-Commutative-Ring
Properties
A linear map maps zero to zero
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (V : left-module-Commutative-Ring l2 R) (W : left-module-Commutative-Ring l3 R) (f : linear-map-left-module-Commutative-Ring R V W) where abstract is-zero-map-zero-linear-map-left-module-Commutative-Ring : is-zero-left-module-Commutative-Ring R W ( map-linear-map-left-module-Commutative-Ring R V W f ( zero-left-module-Commutative-Ring R V)) is-zero-map-zero-linear-map-left-module-Commutative-Ring = is-zero-map-zero-linear-map-left-module-Ring ( ring-Commutative-Ring R) ( V) ( W) ( f)
A linear map maps -v to the negation of the map of v
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (V : left-module-Commutative-Ring l2 R) (W : left-module-Commutative-Ring l3 R) (f : linear-map-left-module-Commutative-Ring R V W) where abstract map-neg-linear-map-left-module-Commutative-Ring : (v : type-left-module-Commutative-Ring R V) → map-linear-map-left-module-Commutative-Ring R V W f ( neg-left-module-Commutative-Ring R V v) = neg-left-module-Commutative-Ring R W ( map-linear-map-left-module-Commutative-Ring R V W f v) map-neg-linear-map-left-module-Commutative-Ring = map-neg-linear-map-left-module-Ring ( ring-Commutative-Ring R) ( V) ( W) ( f)
The composition of linear maps is linear
module _ {l1 l2 l3 l4 : Level} (R : Commutative-Ring l1) (V : left-module-Commutative-Ring l2 R) (W : left-module-Commutative-Ring l3 R) (X : left-module-Commutative-Ring l4 R) (g : type-left-module-Commutative-Ring R W → type-left-module-Commutative-Ring R X) (f : type-left-module-Commutative-Ring R V → type-left-module-Commutative-Ring R W) where abstract is-linear-map-comp-left-module-Commutative-Ring : is-linear-map-left-module-Commutative-Ring R W X g → is-linear-map-left-module-Commutative-Ring R V W f → is-linear-map-left-module-Commutative-Ring R V X (g ∘ f) is-linear-map-comp-left-module-Commutative-Ring = is-linear-map-comp-left-module-Ring ( ring-Commutative-Ring R) ( V) ( W) ( X) ( g) ( f)
The linear composition of linear maps between vector spaces
module _ {l1 l2 l3 l4 : Level} (R : Commutative-Ring l1) (V : left-module-Commutative-Ring l2 R) (W : left-module-Commutative-Ring l3 R) (X : left-module-Commutative-Ring l4 R) (g : linear-map-left-module-Commutative-Ring R W X) (f : linear-map-left-module-Commutative-Ring R V W) where comp-linear-map-left-module-Commutative-Ring : linear-map-left-module-Commutative-Ring R V X comp-linear-map-left-module-Commutative-Ring = comp-linear-map-left-module-Ring ( ring-Commutative-Ring R) ( V) ( W) ( X) ( g) ( f)
See also
- Linear maps between left modules over rings
- Linear maps between vector spaces
- Scalar multiplication of linear maps between left modules over commutative rings
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).