Limits of sequences in metric spaces
Content created by malarbol and Louis Wasserman.
Created on 2025-05-01.
Last modified on 2025-08-18.
module metric-spaces.limits-of-sequences-metric-spaces where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.maximum-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.inhabited-subtypes open import foundation.inhabited-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.sequences open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.metric-spaces open import metric-spaces.sequences-metric-spaces open import metric-spaces.short-functions-metric-spaces
Ideas
An element l
of a metric space is the
limit¶
of a sequence in metric spaces u
if there exists a function m : ℚ⁺ → ℕ
such that whenever m ε ≤ n
in ℕ
,
u n
is in an
ε
-neighborhood of l
.
Definition
Limits of sequences in a metric space
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (u : sequence-type-Metric-Space M) (lim : type-Metric-Space M) where is-limit-modulus-prop-sequence-Metric-Space : (ℚ⁺ → ℕ) → Prop l2 is-limit-modulus-prop-sequence-Metric-Space m = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( ℕ) ( λ ( n : ℕ) → hom-Prop ( leq-ℕ-Prop (m ε) n) ( neighborhood-prop-Metric-Space M ε (u n) lim))) is-limit-modulus-sequence-Metric-Space : (ℚ⁺ → ℕ) → UU l2 is-limit-modulus-sequence-Metric-Space m = type-Prop (is-limit-modulus-prop-sequence-Metric-Space m) limit-modulus-sequence-Metric-Space : UU l2 limit-modulus-sequence-Metric-Space = type-subtype is-limit-modulus-prop-sequence-Metric-Space modulus-limit-modulus-sequence-Metric-Space : limit-modulus-sequence-Metric-Space → ℚ⁺ → ℕ modulus-limit-modulus-sequence-Metric-Space m = pr1 m is-modulus-limit-modulus-sequence-Metric-Space : (m : limit-modulus-sequence-Metric-Space) → is-limit-modulus-sequence-Metric-Space (modulus-limit-modulus-sequence-Metric-Space m) is-modulus-limit-modulus-sequence-Metric-Space m = pr2 m is-limit-prop-sequence-Metric-Space : Prop l2 is-limit-prop-sequence-Metric-Space = is-inhabited-subtype-Prop is-limit-modulus-prop-sequence-Metric-Space is-limit-sequence-Metric-Space : UU l2 is-limit-sequence-Metric-Space = type-Prop is-limit-prop-sequence-Metric-Space
Properties
The limit of a sequence in a metric space is unique
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (u : sequence-type-Metric-Space M) (x y : type-Metric-Space M) (Lx : is-limit-sequence-Metric-Space M u x) (Ly : is-limit-sequence-Metric-Space M u y) where sim-limit-sequence-Metric-Space : sim-Metric-Space M x y sim-limit-sequence-Metric-Space = rec-trunc-Prop ( sim-prop-Metric-Space M x y) ( λ My → rec-trunc-Prop ( Π-Prop ℚ⁺ (λ d → neighborhood-prop-Metric-Space M d x y)) ( λ Mx → lemma-sim-limit-modulus-sequence-Metric-Space Mx My) ( Lx)) ( Ly) where lemma-add-limit-modulus-sequence-Metric-Space : (d₁ d₂ : ℚ⁺) → Σ ( ℕ) ( λ N → (n : ℕ) → leq-ℕ N n → neighborhood-Metric-Space M d₁ (u n) x) → Σ ( ℕ) ( λ N → (n : ℕ) → leq-ℕ N n → neighborhood-Metric-Space M d₂ (u n) y) → neighborhood-Metric-Space M (d₁ +ℚ⁺ d₂) x y lemma-add-limit-modulus-sequence-Metric-Space d₁ d₂ (Nx , Mx) (Ny , My) = triangular-neighborhood-Metric-Space M ( x) ( u (max-ℕ Nx Ny)) ( y) ( d₁) ( d₂) ( My (max-ℕ Nx Ny) (right-leq-max-ℕ Nx Ny)) ( symmetric-neighborhood-Metric-Space M d₁ ( u (max-ℕ Nx Ny)) ( x) ( Mx (max-ℕ Nx Ny) (left-leq-max-ℕ Nx Ny))) lemma-sim-limit-modulus-sequence-Metric-Space : limit-modulus-sequence-Metric-Space M u x → limit-modulus-sequence-Metric-Space M u y → sim-Metric-Space M x y lemma-sim-limit-modulus-sequence-Metric-Space mx my ε = let (δ , η , δ+η=ε) = split-ℚ⁺ ε Nδ = modulus-limit-modulus-sequence-Metric-Space M u x mx δ Nη = modulus-limit-modulus-sequence-Metric-Space M u y my η Nε = max-ℕ Nδ Nη Nδ≤Nε = left-leq-max-ℕ Nδ Nη Nη≤Nε = right-leq-max-ℕ Nδ Nη δ-neighborhood : neighborhood-Metric-Space M δ (u Nε) x δ-neighborhood = is-modulus-limit-modulus-sequence-Metric-Space M u x mx δ Nε Nδ≤Nε η-neighborhood : neighborhood-Metric-Space M η (u Nε) y η-neighborhood = is-modulus-limit-modulus-sequence-Metric-Space M u y my η Nε Nη≤Nε in tr ( is-upper-bound-dist-Metric-Space M x y) ( δ+η=ε) ( triangular-neighborhood-Metric-Space ( M) ( x) ( u Nε) ( y) ( δ) ( η) ( η-neighborhood) ( symmetric-neighborhood-Metric-Space ( M) ( δ) ( u Nε) ( x) ( δ-neighborhood))) eq-limit-sequence-Metric-Space : x = y eq-limit-sequence-Metric-Space = eq-sim-Metric-Space M x y sim-limit-sequence-Metric-Space
Having a limit in a metric space is a proposition
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (u : sequence-type-Metric-Space M) where has-limit-sequence-Metric-Space : UU (l1 ⊔ l2) has-limit-sequence-Metric-Space = Σ (type-Metric-Space M) (is-limit-sequence-Metric-Space M u) limit-has-limit-sequence-Metric-Space : has-limit-sequence-Metric-Space → type-Metric-Space M limit-has-limit-sequence-Metric-Space H = pr1 H is-limit-limit-has-limit-sequence-Metric-Space : (H : has-limit-sequence-Metric-Space) → is-limit-sequence-Metric-Space M u (limit-has-limit-sequence-Metric-Space H) is-limit-limit-has-limit-sequence-Metric-Space H = pr2 H is-prop-has-limit-sequence-Metric-Space : is-prop has-limit-sequence-Metric-Space is-prop-has-limit-sequence-Metric-Space = is-prop-all-elements-equal ( λ x y → eq-type-subtype ( is-limit-prop-sequence-Metric-Space M u) ( eq-limit-sequence-Metric-Space M u ( limit-has-limit-sequence-Metric-Space x) ( limit-has-limit-sequence-Metric-Space y) ( is-limit-limit-has-limit-sequence-Metric-Space x) ( is-limit-limit-has-limit-sequence-Metric-Space y))) has-limit-prop-sequence-Metric-Space : Prop (l1 ⊔ l2) has-limit-prop-sequence-Metric-Space = has-limit-sequence-Metric-Space , is-prop-has-limit-sequence-Metric-Space
Short maps between metric spaces preserve limits
module _ {la la' lb lb' : Level} (A : Metric-Space la la') (B : Metric-Space lb lb') (f : short-function-Metric-Space A B) (u : sequence-type-Metric-Space A) (lim : type-Metric-Space A) where short-map-limit-modulus-sequence-Metric-Space : limit-modulus-sequence-Metric-Space A u lim → limit-modulus-sequence-Metric-Space ( B) ( map-sequence ( map-short-function-Metric-Space A B f) ( u)) ( map-short-function-Metric-Space A B f lim) short-map-limit-modulus-sequence-Metric-Space = tot ( λ m H ε n → is-short-map-short-function-Metric-Space A B f ε (u n) lim ∘ H ε n) short-map-limit-sequence-Metric-Space : is-limit-sequence-Metric-Space A u lim → is-limit-sequence-Metric-Space ( B) ( map-sequence ( map-short-function-Metric-Space A B f) ( u)) ( map-short-function-Metric-Space A B f lim) short-map-limit-sequence-Metric-Space = map-is-inhabited short-map-limit-modulus-sequence-Metric-Space
See also
- Convergent sequences are sequences with a limit;
- The metric space of convergent sequences is the metric space of convergent sequences in a metric space with the product metric structure.
External links
- Limit of a sequence at Wikidata
- Limit of a sequence at Wikipedia
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).
- 2025-05-01. malarbol. Limits of sequences in metric spaces (#1378).