Limits of sequences in metric spaces
Content created by malarbol.
Created on 2025-05-01.
Last modified on 2025-05-01.
module metric-spaces.limits-of-sequences-metric-spaces where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.inhabited-subtypes open import foundation.inhabited-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.limits-of-sequences-premetric-spaces open import metric-spaces.limits-of-sequences-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.sequences-metric-spaces
Ideas
Limits¶
of sequences in metric spaces are
limits in the
underlying premetric space: there exists a
function m : ℚ⁺ → ℕ
such that whenever m ε ≤ n
in ℕ
, u n
is in an
ε
-neighborhood of l
. In a metric
space, all limits of a sequence are equal.
Definition
Limits of sequences in a metric space
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (u : sequence-type-Metric-Space M) (l : type-Metric-Space M) where is-limit-modulus-prop-sequence-Metric-Space : (ℚ⁺ → ℕ) → Prop l2 is-limit-modulus-prop-sequence-Metric-Space = is-limit-modulus-prop-sequence-Premetric-Space ( premetric-Metric-Space M) ( u) ( l) is-limit-modulus-sequence-Metric-Space : (ℚ⁺ → ℕ) → UU l2 is-limit-modulus-sequence-Metric-Space m = type-Prop (is-limit-modulus-prop-sequence-Metric-Space m) limit-modulus-sequence-Metric-Space : UU l2 limit-modulus-sequence-Metric-Space = type-subtype is-limit-modulus-prop-sequence-Metric-Space modulus-limit-modulus-sequence-Metric-Space : limit-modulus-sequence-Metric-Space → ℚ⁺ → ℕ modulus-limit-modulus-sequence-Metric-Space m = pr1 m is-modulus-limit-modulus-sequence-Metric-Space : (m : limit-modulus-sequence-Metric-Space) → is-limit-modulus-sequence-Metric-Space (modulus-limit-modulus-sequence-Metric-Space m) is-modulus-limit-modulus-sequence-Metric-Space m = pr2 m is-limit-prop-sequence-Metric-Space : Prop l2 is-limit-prop-sequence-Metric-Space = is-inhabited-subtype-Prop is-limit-modulus-prop-sequence-Metric-Space is-limit-sequence-Metric-Space : UU l2 is-limit-sequence-Metric-Space = type-Prop is-limit-prop-sequence-Metric-Space
Properties
The limit of a sequence in a metric space is unique
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (u : sequence-type-Metric-Space M) (x y : type-Metric-Space M) (Lx : is-limit-sequence-Metric-Space M u x) (Ly : is-limit-sequence-Metric-Space M u y) where eq-limit-sequence-Metric-Space : x = y eq-limit-sequence-Metric-Space = is-tight-structure-Metric-Space M x y ( indistinguishable-limit-sequence-Pseudometric-Space ( pseudometric-Metric-Space M) ( u) ( x) ( y) ( Lx) ( Ly))
Having a limit in a metric space is a proposition
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (u : sequence-type-Metric-Space M) where has-limit-sequence-Metric-Space : UU (l1 ⊔ l2) has-limit-sequence-Metric-Space = Σ (type-Metric-Space M) (is-limit-sequence-Metric-Space M u) limit-has-limit-sequence-Metric-Space : has-limit-sequence-Metric-Space → type-Metric-Space M limit-has-limit-sequence-Metric-Space H = pr1 H is-limit-limit-has-limit-sequence-Metric-Space : (H : has-limit-sequence-Metric-Space) → is-limit-sequence-Metric-Space M u (limit-has-limit-sequence-Metric-Space H) is-limit-limit-has-limit-sequence-Metric-Space H = pr2 H is-prop-has-limit-sequence-Metric-Space : is-prop has-limit-sequence-Metric-Space is-prop-has-limit-sequence-Metric-Space = is-prop-all-elements-equal ( λ x y → eq-type-subtype ( is-limit-prop-sequence-Metric-Space M u) ( eq-limit-sequence-Metric-Space M u ( limit-has-limit-sequence-Metric-Space x) ( limit-has-limit-sequence-Metric-Space y) ( is-limit-limit-has-limit-sequence-Metric-Space x) ( is-limit-limit-has-limit-sequence-Metric-Space y))) has-limit-prop-sequence-Metric-Space : Prop (l1 ⊔ l2) has-limit-prop-sequence-Metric-Space = has-limit-sequence-Metric-Space , is-prop-has-limit-sequence-Metric-Space
See also
- Convergent sequences: the type of sequences that have a limit
- The metric space of convergent sequences: the metric structure on the type of convergent sequences
External links
- Limit of a sequence at Wikidata
- Limit of a sequence at Wikipedia
Recent changes
- 2025-05-01. malarbol. Limits of sequences in metric spaces (#1378).