Inequality on cardinals
Content created by Fredrik Bakke.
Created on 2026-01-10.
Last modified on 2026-01-10.
module set-theory.inequality-cardinals where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.identity-types open import foundation.large-binary-relations open import foundation.law-of-excluded-middle open import foundation.mere-embeddings open import foundation.propositional-extensionality open import foundation.propositions open import foundation.set-truncations open import foundation.sets open import foundation.univalence open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-preorders open import set-theory.cardinals open import set-theory.equality-cardinals
Idea
We say a cardinal X is
less than or equal to¶
a cardinal Y if any set in the isomorphism class of
X embeds into any set in the isomorphism class of Y. This defines the
standard ordering¶
on cardinals.
Under the assumption of the law of excluded middle this relation is antisymmetric and hence defines a partial order, due to the Cantor–Schröder–Bernstein theorem.
Definition
Boundedness of the cardinality of a set
module _ {l1 l2 : Level} (X : Set l1) where leq-prop-Cardinal' : Cardinal l2 → Prop (l1 ⊔ l2) leq-prop-Cardinal' = map-universal-property-trunc-Set ( Prop-Set (l1 ⊔ l2)) ( λ Y' → mere-emb-Prop (type-Set X) (type-Set Y')) compute-leq-prop-Cardinal' : (Y : Set l2) → leq-prop-Cardinal' (cardinality Y) = mere-emb-Prop (type-Set X) (type-Set Y) compute-leq-prop-Cardinal' = triangle-universal-property-trunc-Set ( Prop-Set (l1 ⊔ l2)) ( λ Y' → mere-emb-Prop (type-Set X) (type-Set Y'))
Inequality of cardinals
module _ {l1 l2 : Level} where leq-prop-Cardinal : Cardinal l1 → Cardinal l2 → Prop (l1 ⊔ l2) leq-prop-Cardinal = map-universal-property-trunc-Set ( hom-set-Set (Cardinal-Set l2) (Prop-Set (l1 ⊔ l2))) ( leq-prop-Cardinal') leq-Cardinal : Cardinal l1 → Cardinal l2 → UU (l1 ⊔ l2) leq-Cardinal X Y = type-Prop (leq-prop-Cardinal X Y) is-prop-leq-Cardinal : {X : Cardinal l1} {Y : Cardinal l2} → is-prop (leq-Cardinal X Y) is-prop-leq-Cardinal {X} {Y} = is-prop-type-Prop (leq-prop-Cardinal X Y)
Inequality of cardinalities
module _ {l1 l2 : Level} (X : Set l1) (Y : Set l2) where leq-prop-cardinality : Prop (l1 ⊔ l2) leq-prop-cardinality = leq-prop-Cardinal (cardinality X) (cardinality Y) leq-cardinality : UU (l1 ⊔ l2) leq-cardinality = leq-Cardinal (cardinality X) (cardinality Y) is-prop-leq-cardinality : is-prop leq-cardinality is-prop-leq-cardinality = is-prop-leq-Cardinal eq-compute-leq-prop-cardinality : leq-prop-cardinality = mere-emb-Prop (type-Set X) (type-Set Y) eq-compute-leq-prop-cardinality = ( htpy-eq ( triangle-universal-property-trunc-Set ( hom-set-Set (Cardinal-Set l2) (Prop-Set (l1 ⊔ l2))) ( leq-prop-Cardinal') X) (cardinality Y)) ∙ ( compute-leq-prop-Cardinal' X Y) eq-compute-leq-cardinality : leq-cardinality = mere-emb (type-Set X) (type-Set Y) eq-compute-leq-cardinality = ap type-Prop eq-compute-leq-prop-cardinality compute-leq-cardinality : leq-cardinality ≃ mere-emb (type-Set X) (type-Set Y) compute-leq-cardinality = equiv-eq eq-compute-leq-cardinality unit-leq-cardinality : mere-emb (type-Set X) (type-Set Y) → leq-cardinality unit-leq-cardinality = map-inv-equiv compute-leq-cardinality inv-unit-leq-cardinality : leq-cardinality → mere-emb (type-Set X) (type-Set Y) inv-unit-leq-cardinality = pr1 compute-leq-cardinality
Inequality on cardinals is reflexive
refl-leq-cardinality : is-reflexive-Large-Relation Set leq-cardinality refl-leq-cardinality A = unit-leq-cardinality A A (refl-mere-emb (type-Set A)) refl-leq-Cardinal : is-reflexive-Large-Relation Cardinal leq-Cardinal refl-leq-Cardinal = apply-dependent-universal-property-trunc-Set' ( λ X → set-Prop (leq-prop-Cardinal X X)) ( refl-leq-cardinality)
Inequality on cardinals is transitive
module _ {l1 l2 l3 : Level} where transitive-leq-cardinality : (X : Set l1) (Y : Set l2) (Z : Set l3) → leq-cardinality Y Z → leq-cardinality X Y → leq-cardinality X Z transitive-leq-cardinality X Y Z Y≤Z X≤Y = unit-leq-cardinality X Z ( transitive-mere-emb ( inv-unit-leq-cardinality Y Z Y≤Z) ( inv-unit-leq-cardinality X Y X≤Y)) transitive-leq-Cardinal : (X : Cardinal l1) (Y : Cardinal l2) (Z : Cardinal l3) → leq-Cardinal Y Z → leq-Cardinal X Y → leq-Cardinal X Z transitive-leq-Cardinal = apply-thrice-dependent-universal-property-trunc-Set' ( λ X Y Z → ( leq-Cardinal Y Z → leq-Cardinal X Y → leq-Cardinal X Z) , ( is-set-function-type ( is-set-function-type ( is-set-is-prop is-prop-leq-Cardinal)))) ( transitive-leq-cardinality)
Properties
Assuming excluded middle, then inequality is antisymmetric
Using that mere equivalence characterizes equality of cardinals we can conclude
by the Cantor–Schröder–Bernstein theorem, assuming the law of excluded middle,
that leq-Cardinal is antisymmetric and hence a partial order.
module _ {l : Level} (lem : level-LEM l) where antisymmetric-leq-cardinality : (X Y : Set l) → leq-cardinality X Y → leq-cardinality Y X → cardinality X = cardinality Y antisymmetric-leq-cardinality X Y X≤Y Y≤X = eq-mere-equiv-cardinality X Y ( antisymmetric-mere-emb ( lem) ( inv-unit-leq-cardinality X Y X≤Y) ( inv-unit-leq-cardinality Y X Y≤X)) antisymmetric-leq-Cardinal : (X Y : Cardinal l) → leq-Cardinal X Y → leq-Cardinal Y X → X = Y antisymmetric-leq-Cardinal = apply-twice-dependent-universal-property-trunc-Set' ( λ X Y → set-Prop ( function-Prop ( leq-Cardinal X Y) ( function-Prop (leq-Cardinal Y X) (Id-Prop (Cardinal-Set l) X Y)))) ( antisymmetric-leq-cardinality)
The large poset of cardinals
large-preorder-Cardinal : Large-Preorder lsuc (_⊔_) large-preorder-Cardinal = λ where .type-Large-Preorder → Cardinal .leq-prop-Large-Preorder → leq-prop-Cardinal .refl-leq-Large-Preorder → refl-leq-Cardinal .transitive-leq-Large-Preorder → transitive-leq-Cardinal large-poset-Cardinal : LEM → Large-Poset lsuc (_⊔_) large-poset-Cardinal lem = λ where .large-preorder-Large-Poset → large-preorder-Cardinal .antisymmetric-leq-Large-Poset → antisymmetric-leq-Cardinal lem
See also
Recent changes
- 2026-01-10. Fredrik Bakke. Complemented inequality of cardinalities (#1591).