Dependent products of left modules over rings
Content created by Louis Wasserman.
Created on 2025-08-07.
Last modified on 2025-08-07.
module linear-algebra.dependent-products-left-modules-rings where
Imports
open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.dependent-products-abelian-groups open import linear-algebra.left-modules-rings open import ring-theory.homomorphisms-rings open import ring-theory.rings
Idea
Given a ring R
and a family of
left modules Mᵢ
over R
indexed by
i : I
, the dependent product Π (i : I) Mᵢ
is a left module over R
.
Definition
module _ {l1 l2 l3 : Level} (R : Ring l1) (I : UU l2) (M : I → left-module-Ring l3 R) where ab-Π-left-module-Ring : Ab (l2 ⊔ l3) ab-Π-left-module-Ring = Π-Ab I (ab-left-module-Ring R ∘ M) type-Π-left-module-Ring : UU (l2 ⊔ l3) type-Π-left-module-Ring = type-Ab ab-Π-left-module-Ring add-Π-left-module-Ring : type-Π-left-module-Ring → type-Π-left-module-Ring → type-Π-left-module-Ring add-Π-left-module-Ring = add-Ab ab-Π-left-module-Ring mul-Π-left-module-Ring : type-Ring R → type-Π-left-module-Ring → type-Π-left-module-Ring mul-Π-left-module-Ring r π i = mul-left-module-Ring R (M i) r (π i) left-distributive-mul-add-Π-left-module-Ring : (r : type-Ring R) (x y : type-Π-left-module-Ring) → mul-Π-left-module-Ring r (add-Π-left-module-Ring x y) = add-Π-left-module-Ring ( mul-Π-left-module-Ring r x) ( mul-Π-left-module-Ring r y) left-distributive-mul-add-Π-left-module-Ring r x y = eq-htpy ( λ i → left-distributive-mul-add-left-module-Ring R (M i) r (x i) (y i)) right-distributive-mul-add-Π-left-module-Ring : (r s : type-Ring R) (x : type-Π-left-module-Ring) → mul-Π-left-module-Ring (add-Ring R r s) x = add-Π-left-module-Ring ( mul-Π-left-module-Ring r x) ( mul-Π-left-module-Ring s x) right-distributive-mul-add-Π-left-module-Ring r s x = eq-htpy ( λ i → right-distributive-mul-add-left-module-Ring R (M i) r s (x i)) left-unit-law-mul-Π-left-module-Ring : (x : type-Π-left-module-Ring) → mul-Π-left-module-Ring (one-Ring R) x = x left-unit-law-mul-Π-left-module-Ring x = eq-htpy (λ i → left-unit-law-mul-left-module-Ring R (M i) (x i)) associative-mul-Π-left-module-Ring : (r s : type-Ring R) (x : type-Π-left-module-Ring) → mul-Π-left-module-Ring (mul-Ring R r s) x = mul-Π-left-module-Ring r (mul-Π-left-module-Ring s x) associative-mul-Π-left-module-Ring r s x = eq-htpy (λ i → associative-mul-left-module-Ring R (M i) r s (x i)) Π-left-module-Ring : left-module-Ring (l2 ⊔ l3) R Π-left-module-Ring = make-left-module-Ring ( R) ( ab-Π-left-module-Ring) ( mul-Π-left-module-Ring) ( left-distributive-mul-add-Π-left-module-Ring) ( right-distributive-mul-add-Π-left-module-Ring) ( left-unit-law-mul-Π-left-module-Ring) ( associative-mul-Π-left-module-Ring)
Recent changes
- 2025-08-07. Louis Wasserman. Dependent products of left modules over rings (#1465).