Integral domains
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Fernando Chu.
Created on 2022-05-23.
Last modified on 2024-03-11.
module commutative-algebra.integral-domains where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.commutative-semirings open import commutative-algebra.trivial-commutative-rings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-embeddings open import foundation.binary-equivalences open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.identity-types open import foundation.injective-maps open import foundation.interchange-law open import foundation.involutions open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import lists.concatenation-lists open import lists.lists open import ring-theory.rings open import ring-theory.semirings
Idea
An integral domain is a nonzero commutative ring R
such that the product
of any two nonzero elements in R
is nonzero. Equivalently, a commutative ring
R
is an integral domain if and only if multiplication by any nonzero element
a
satisfies the cancellation property: ax = ay ⇒ x = y
.
Definition
The cancellation property for a commutative ring
cancellation-property-Commutative-Ring : {l : Level} (R : Commutative-Ring l) → UU l cancellation-property-Commutative-Ring R = (x : type-Commutative-Ring R) → is-nonzero-Commutative-Ring R x → is-injective (mul-Commutative-Ring R x)
Integral domains
Integral-Domain : (l : Level) → UU (lsuc l) Integral-Domain l = Σ ( Commutative-Ring l) ( λ R → cancellation-property-Commutative-Ring R × is-nontrivial-Commutative-Ring R) module _ {l : Level} (R : Integral-Domain l) where commutative-ring-Integral-Domain : Commutative-Ring l commutative-ring-Integral-Domain = pr1 R has-cancellation-property-Integral-Domain : cancellation-property-Commutative-Ring commutative-ring-Integral-Domain has-cancellation-property-Integral-Domain = pr1 (pr2 R) is-nontrivial-Integral-Domain : is-nontrivial-Commutative-Ring commutative-ring-Integral-Domain is-nontrivial-Integral-Domain = pr2 (pr2 R) ab-Integral-Domain : Ab l ab-Integral-Domain = ab-Commutative-Ring commutative-ring-Integral-Domain ring-Integral-Domain : Ring l ring-Integral-Domain = ring-Commutative-Ring commutative-ring-Integral-Domain set-Integral-Domain : Set l set-Integral-Domain = set-Ring ring-Integral-Domain type-Integral-Domain : UU l type-Integral-Domain = type-Ring ring-Integral-Domain is-set-type-Integral-Domain : is-set type-Integral-Domain is-set-type-Integral-Domain = is-set-type-Ring ring-Integral-Domain
Addition in an integral domain
has-associative-add-Integral-Domain : has-associative-mul-Set set-Integral-Domain has-associative-add-Integral-Domain = has-associative-add-Commutative-Ring commutative-ring-Integral-Domain add-Integral-Domain : type-Integral-Domain → type-Integral-Domain → type-Integral-Domain add-Integral-Domain = add-Commutative-Ring commutative-ring-Integral-Domain add-Integral-Domain' : type-Integral-Domain → type-Integral-Domain → type-Integral-Domain add-Integral-Domain' = add-Commutative-Ring' commutative-ring-Integral-Domain ap-add-Integral-Domain : {x x' y y' : type-Integral-Domain} → (x = x') → (y = y') → add-Integral-Domain x y = add-Integral-Domain x' y' ap-add-Integral-Domain = ap-add-Commutative-Ring commutative-ring-Integral-Domain associative-add-Integral-Domain : (x y z : type-Integral-Domain) → ( add-Integral-Domain (add-Integral-Domain x y) z) = ( add-Integral-Domain x (add-Integral-Domain y z)) associative-add-Integral-Domain = associative-add-Commutative-Ring commutative-ring-Integral-Domain additive-semigroup-Integral-Domain : Semigroup l additive-semigroup-Integral-Domain = semigroup-Ab ab-Integral-Domain is-group-additive-semigroup-Integral-Domain : is-group-Semigroup additive-semigroup-Integral-Domain is-group-additive-semigroup-Integral-Domain = is-group-Ab ab-Integral-Domain commutative-add-Integral-Domain : (x y : type-Integral-Domain) → Id (add-Integral-Domain x y) (add-Integral-Domain y x) commutative-add-Integral-Domain = commutative-add-Ab ab-Integral-Domain interchange-add-add-Integral-Domain : (x y x' y' : type-Integral-Domain) → ( add-Integral-Domain ( add-Integral-Domain x y) ( add-Integral-Domain x' y')) = ( add-Integral-Domain ( add-Integral-Domain x x') ( add-Integral-Domain y y')) interchange-add-add-Integral-Domain = interchange-add-add-Commutative-Ring commutative-ring-Integral-Domain right-swap-add-Integral-Domain : (x y z : type-Integral-Domain) → ( add-Integral-Domain (add-Integral-Domain x y) z) = ( add-Integral-Domain (add-Integral-Domain x z) y) right-swap-add-Integral-Domain = right-swap-add-Commutative-Ring commutative-ring-Integral-Domain left-swap-add-Integral-Domain : (x y z : type-Integral-Domain) → ( add-Integral-Domain x (add-Integral-Domain y z)) = ( add-Integral-Domain y (add-Integral-Domain x z)) left-swap-add-Integral-Domain = left-swap-add-Commutative-Ring commutative-ring-Integral-Domain is-equiv-add-Integral-Domain : (x : type-Integral-Domain) → is-equiv (add-Integral-Domain x) is-equiv-add-Integral-Domain = is-equiv-add-Ab ab-Integral-Domain is-equiv-add-Integral-Domain' : (x : type-Integral-Domain) → is-equiv (add-Integral-Domain' x) is-equiv-add-Integral-Domain' = is-equiv-add-Ab' ab-Integral-Domain is-binary-equiv-add-Integral-Domain : is-binary-equiv add-Integral-Domain pr1 is-binary-equiv-add-Integral-Domain = is-equiv-add-Integral-Domain' pr2 is-binary-equiv-add-Integral-Domain = is-equiv-add-Integral-Domain is-binary-emb-add-Integral-Domain : is-binary-emb add-Integral-Domain is-binary-emb-add-Integral-Domain = is-binary-emb-add-Ab ab-Integral-Domain is-emb-add-Integral-Domain : (x : type-Integral-Domain) → is-emb (add-Integral-Domain x) is-emb-add-Integral-Domain = is-emb-add-Ab ab-Integral-Domain is-emb-add-Integral-Domain' : (x : type-Integral-Domain) → is-emb (add-Integral-Domain' x) is-emb-add-Integral-Domain' = is-emb-add-Ab' ab-Integral-Domain is-injective-add-Integral-Domain : (x : type-Integral-Domain) → is-injective (add-Integral-Domain x) is-injective-add-Integral-Domain = is-injective-add-Ab ab-Integral-Domain is-injective-add-Integral-Domain' : (x : type-Integral-Domain) → is-injective (add-Integral-Domain' x) is-injective-add-Integral-Domain' = is-injective-add-Ab' ab-Integral-Domain
The zero element of an integral domain
has-zero-Integral-Domain : is-unital add-Integral-Domain has-zero-Integral-Domain = has-zero-Commutative-Ring commutative-ring-Integral-Domain zero-Integral-Domain : type-Integral-Domain zero-Integral-Domain = zero-Commutative-Ring commutative-ring-Integral-Domain is-zero-Integral-Domain : type-Integral-Domain → UU l is-zero-Integral-Domain = is-zero-Commutative-Ring commutative-ring-Integral-Domain is-nonzero-Integral-Domain : type-Integral-Domain → UU l is-nonzero-Integral-Domain = is-nonzero-Commutative-Ring commutative-ring-Integral-Domain is-zero-integral-domain-Prop : type-Integral-Domain → Prop l is-zero-integral-domain-Prop x = Id-Prop set-Integral-Domain x zero-Integral-Domain is-nonzero-integral-domain-Prop : type-Integral-Domain → Prop l is-nonzero-integral-domain-Prop x = neg-Prop (is-zero-integral-domain-Prop x) left-unit-law-add-Integral-Domain : (x : type-Integral-Domain) → add-Integral-Domain zero-Integral-Domain x = x left-unit-law-add-Integral-Domain = left-unit-law-add-Commutative-Ring commutative-ring-Integral-Domain right-unit-law-add-Integral-Domain : (x : type-Integral-Domain) → add-Integral-Domain x zero-Integral-Domain = x right-unit-law-add-Integral-Domain = right-unit-law-add-Commutative-Ring commutative-ring-Integral-Domain
Additive inverses in an integral domain
has-negatives-Integral-Domain : is-group-is-unital-Semigroup ( additive-semigroup-Integral-Domain) ( has-zero-Integral-Domain) has-negatives-Integral-Domain = has-negatives-Ab ab-Integral-Domain neg-Integral-Domain : type-Integral-Domain → type-Integral-Domain neg-Integral-Domain = neg-Commutative-Ring commutative-ring-Integral-Domain left-inverse-law-add-Integral-Domain : (x : type-Integral-Domain) → add-Integral-Domain (neg-Integral-Domain x) x = zero-Integral-Domain left-inverse-law-add-Integral-Domain = left-inverse-law-add-Commutative-Ring commutative-ring-Integral-Domain right-inverse-law-add-Integral-Domain : (x : type-Integral-Domain) → add-Integral-Domain x (neg-Integral-Domain x) = zero-Integral-Domain right-inverse-law-add-Integral-Domain = right-inverse-law-add-Commutative-Ring commutative-ring-Integral-Domain neg-neg-Integral-Domain : (x : type-Integral-Domain) → neg-Integral-Domain (neg-Integral-Domain x) = x neg-neg-Integral-Domain = neg-neg-Ab ab-Integral-Domain distributive-neg-add-Integral-Domain : (x y : type-Integral-Domain) → neg-Integral-Domain (add-Integral-Domain x y) = add-Integral-Domain (neg-Integral-Domain x) (neg-Integral-Domain y) distributive-neg-add-Integral-Domain = distributive-neg-add-Ab ab-Integral-Domain
Multiplication in an integral domain
has-associative-mul-Integral-Domain : has-associative-mul-Set set-Integral-Domain has-associative-mul-Integral-Domain = has-associative-mul-Commutative-Ring commutative-ring-Integral-Domain mul-Integral-Domain : (x y : type-Integral-Domain) → type-Integral-Domain mul-Integral-Domain = mul-Commutative-Ring commutative-ring-Integral-Domain mul-Integral-Domain' : (x y : type-Integral-Domain) → type-Integral-Domain mul-Integral-Domain' = mul-Commutative-Ring' commutative-ring-Integral-Domain ap-mul-Integral-Domain : {x x' y y' : type-Integral-Domain} (p : Id x x') (q : Id y y') → Id (mul-Integral-Domain x y) (mul-Integral-Domain x' y') ap-mul-Integral-Domain p q = ap-binary mul-Integral-Domain p q associative-mul-Integral-Domain : (x y z : type-Integral-Domain) → mul-Integral-Domain (mul-Integral-Domain x y) z = mul-Integral-Domain x (mul-Integral-Domain y z) associative-mul-Integral-Domain = associative-mul-Commutative-Ring commutative-ring-Integral-Domain multiplicative-semigroup-Integral-Domain : Semigroup l multiplicative-semigroup-Integral-Domain = multiplicative-semigroup-Commutative-Ring commutative-ring-Integral-Domain left-distributive-mul-add-Integral-Domain : (x y z : type-Integral-Domain) → ( mul-Integral-Domain x (add-Integral-Domain y z)) = ( add-Integral-Domain ( mul-Integral-Domain x y) ( mul-Integral-Domain x z)) left-distributive-mul-add-Integral-Domain = left-distributive-mul-add-Commutative-Ring commutative-ring-Integral-Domain right-distributive-mul-add-Integral-Domain : (x y z : type-Integral-Domain) → ( mul-Integral-Domain (add-Integral-Domain x y) z) = ( add-Integral-Domain ( mul-Integral-Domain x z) ( mul-Integral-Domain y z)) right-distributive-mul-add-Integral-Domain = right-distributive-mul-add-Commutative-Ring commutative-ring-Integral-Domain commutative-mul-Integral-Domain : (x y : type-Integral-Domain) → mul-Integral-Domain x y = mul-Integral-Domain y x commutative-mul-Integral-Domain = commutative-mul-Commutative-Ring commutative-ring-Integral-Domain
Multiplicative units in an integral domain
is-unital-Integral-Domain : is-unital mul-Integral-Domain is-unital-Integral-Domain = is-unital-Commutative-Ring commutative-ring-Integral-Domain multiplicative-monoid-Integral-Domain : Monoid l multiplicative-monoid-Integral-Domain = multiplicative-monoid-Commutative-Ring commutative-ring-Integral-Domain one-Integral-Domain : type-Integral-Domain one-Integral-Domain = one-Commutative-Ring commutative-ring-Integral-Domain left-unit-law-mul-Integral-Domain : (x : type-Integral-Domain) → mul-Integral-Domain one-Integral-Domain x = x left-unit-law-mul-Integral-Domain = left-unit-law-mul-Commutative-Ring commutative-ring-Integral-Domain right-unit-law-mul-Integral-Domain : (x : type-Integral-Domain) → mul-Integral-Domain x one-Integral-Domain = x right-unit-law-mul-Integral-Domain = right-unit-law-mul-Commutative-Ring commutative-ring-Integral-Domain right-swap-mul-Integral-Domain : (x y z : type-Integral-Domain) → mul-Integral-Domain (mul-Integral-Domain x y) z = mul-Integral-Domain (mul-Integral-Domain x z) y right-swap-mul-Integral-Domain x y z = ( associative-mul-Integral-Domain x y z) ∙ ( ( ap ( mul-Integral-Domain x) ( commutative-mul-Integral-Domain y z)) ∙ ( inv (associative-mul-Integral-Domain x z y))) left-swap-mul-Integral-Domain : (x y z : type-Integral-Domain) → mul-Integral-Domain x (mul-Integral-Domain y z) = mul-Integral-Domain y (mul-Integral-Domain x z) left-swap-mul-Integral-Domain x y z = ( inv (associative-mul-Integral-Domain x y z)) ∙ ( ( ap ( mul-Integral-Domain' z) ( commutative-mul-Integral-Domain x y)) ∙ ( associative-mul-Integral-Domain y x z)) interchange-mul-mul-Integral-Domain : (x y z w : type-Integral-Domain) → mul-Integral-Domain ( mul-Integral-Domain x y) ( mul-Integral-Domain z w) = mul-Integral-Domain ( mul-Integral-Domain x z) ( mul-Integral-Domain y w) interchange-mul-mul-Integral-Domain = interchange-law-commutative-and-associative mul-Integral-Domain commutative-mul-Integral-Domain associative-mul-Integral-Domain
The zero laws for multiplication of a integral domains
left-zero-law-mul-Integral-Domain : (x : type-Integral-Domain) → mul-Integral-Domain zero-Integral-Domain x = zero-Integral-Domain left-zero-law-mul-Integral-Domain = left-zero-law-mul-Commutative-Ring commutative-ring-Integral-Domain right-zero-law-mul-Integral-Domain : (x : type-Integral-Domain) → mul-Integral-Domain x zero-Integral-Domain = zero-Integral-Domain right-zero-law-mul-Integral-Domain = right-zero-law-mul-Commutative-Ring commutative-ring-Integral-Domain
Integral domains are commutative semirings
multiplicative-commutative-monoid-Integral-Domain : Commutative-Monoid l multiplicative-commutative-monoid-Integral-Domain = multiplicative-commutative-monoid-Commutative-Ring commutative-ring-Integral-Domain semiring-Integral-Domain : Semiring l semiring-Integral-Domain = semiring-Commutative-Ring commutative-ring-Integral-Domain commutative-semiring-Integral-Domain : Commutative-Semiring l commutative-semiring-Integral-Domain = commutative-semiring-Commutative-Ring commutative-ring-Integral-Domain
Computing multiplication with minus one in an integral domain
neg-one-Integral-Domain : type-Integral-Domain neg-one-Integral-Domain = neg-one-Commutative-Ring commutative-ring-Integral-Domain mul-neg-one-Integral-Domain : (x : type-Integral-Domain) → mul-Integral-Domain neg-one-Integral-Domain x = neg-Integral-Domain x mul-neg-one-Integral-Domain = mul-neg-one-Commutative-Ring commutative-ring-Integral-Domain mul-neg-one-Integral-Domain' : (x : type-Integral-Domain) → mul-Integral-Domain x neg-one-Integral-Domain = neg-Integral-Domain x mul-neg-one-Integral-Domain' = mul-neg-one-Commutative-Ring' commutative-ring-Integral-Domain is-involution-mul-neg-one-Integral-Domain : is-involution (mul-Integral-Domain neg-one-Integral-Domain) is-involution-mul-neg-one-Integral-Domain = is-involution-mul-neg-one-Commutative-Ring commutative-ring-Integral-Domain is-involution-mul-neg-one-Integral-Domain' : is-involution (mul-Integral-Domain' neg-one-Integral-Domain) is-involution-mul-neg-one-Integral-Domain' = is-involution-mul-neg-one-Commutative-Ring' commutative-ring-Integral-Domain
Left and right negative laws for multiplication
left-negative-law-mul-Integral-Domain : (x y : type-Integral-Domain) → mul-Integral-Domain (neg-Integral-Domain x) y = neg-Integral-Domain (mul-Integral-Domain x y) left-negative-law-mul-Integral-Domain = left-negative-law-mul-Commutative-Ring commutative-ring-Integral-Domain right-negative-law-mul-Integral-Domain : (x y : type-Integral-Domain) → mul-Integral-Domain x (neg-Integral-Domain y) = neg-Integral-Domain (mul-Integral-Domain x y) right-negative-law-mul-Integral-Domain = right-negative-law-mul-Commutative-Ring commutative-ring-Integral-Domain mul-neg-Integral-Domain : (x y : type-Integral-Domain) → mul-Integral-Domain (neg-Integral-Domain x) (neg-Integral-Domain y) = mul-Integral-Domain x y mul-neg-Integral-Domain = mul-neg-Commutative-Ring commutative-ring-Integral-Domain
Scalar multiplication of elements of a integral domain by natural numbers
mul-nat-scalar-Integral-Domain : ℕ → type-Integral-Domain → type-Integral-Domain mul-nat-scalar-Integral-Domain = mul-nat-scalar-Commutative-Ring commutative-ring-Integral-Domain ap-mul-nat-scalar-Integral-Domain : {m n : ℕ} {x y : type-Integral-Domain} → (m = n) → (x = y) → mul-nat-scalar-Integral-Domain m x = mul-nat-scalar-Integral-Domain n y ap-mul-nat-scalar-Integral-Domain = ap-mul-nat-scalar-Commutative-Ring commutative-ring-Integral-Domain left-zero-law-mul-nat-scalar-Integral-Domain : (x : type-Integral-Domain) → mul-nat-scalar-Integral-Domain 0 x = zero-Integral-Domain left-zero-law-mul-nat-scalar-Integral-Domain = left-zero-law-mul-nat-scalar-Commutative-Ring commutative-ring-Integral-Domain right-zero-law-mul-nat-scalar-Integral-Domain : (n : ℕ) → mul-nat-scalar-Integral-Domain n zero-Integral-Domain = zero-Integral-Domain right-zero-law-mul-nat-scalar-Integral-Domain = right-zero-law-mul-nat-scalar-Commutative-Ring commutative-ring-Integral-Domain left-unit-law-mul-nat-scalar-Integral-Domain : (x : type-Integral-Domain) → mul-nat-scalar-Integral-Domain 1 x = x left-unit-law-mul-nat-scalar-Integral-Domain = left-unit-law-mul-nat-scalar-Commutative-Ring commutative-ring-Integral-Domain left-nat-scalar-law-mul-Integral-Domain : (n : ℕ) (x y : type-Integral-Domain) → mul-Integral-Domain (mul-nat-scalar-Integral-Domain n x) y = mul-nat-scalar-Integral-Domain n (mul-Integral-Domain x y) left-nat-scalar-law-mul-Integral-Domain = left-nat-scalar-law-mul-Commutative-Ring commutative-ring-Integral-Domain right-nat-scalar-law-mul-Integral-Domain : (n : ℕ) (x y : type-Integral-Domain) → mul-Integral-Domain x (mul-nat-scalar-Integral-Domain n y) = mul-nat-scalar-Integral-Domain n (mul-Integral-Domain x y) right-nat-scalar-law-mul-Integral-Domain = right-nat-scalar-law-mul-Commutative-Ring commutative-ring-Integral-Domain left-distributive-mul-nat-scalar-add-Integral-Domain : (n : ℕ) (x y : type-Integral-Domain) → mul-nat-scalar-Integral-Domain n (add-Integral-Domain x y) = add-Integral-Domain ( mul-nat-scalar-Integral-Domain n x) ( mul-nat-scalar-Integral-Domain n y) left-distributive-mul-nat-scalar-add-Integral-Domain = left-distributive-mul-nat-scalar-add-Commutative-Ring commutative-ring-Integral-Domain right-distributive-mul-nat-scalar-add-Integral-Domain : (m n : ℕ) (x : type-Integral-Domain) → mul-nat-scalar-Integral-Domain (m +ℕ n) x = add-Integral-Domain ( mul-nat-scalar-Integral-Domain m x) ( mul-nat-scalar-Integral-Domain n x) right-distributive-mul-nat-scalar-add-Integral-Domain = right-distributive-mul-nat-scalar-add-Commutative-Ring commutative-ring-Integral-Domain
Addition of a list of elements in an integral domain
add-list-Integral-Domain : list type-Integral-Domain → type-Integral-Domain add-list-Integral-Domain = add-list-Commutative-Ring commutative-ring-Integral-Domain preserves-concat-add-list-Integral-Domain : (l1 l2 : list type-Integral-Domain) → Id ( add-list-Integral-Domain (concat-list l1 l2)) ( add-Integral-Domain ( add-list-Integral-Domain l1) ( add-list-Integral-Domain l2)) preserves-concat-add-list-Integral-Domain = preserves-concat-add-list-Commutative-Ring commutative-ring-Integral-Domain
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).