Equivalences of cospans
Content created by Egbert Rijke.
Created on 2024-01-28.
Last modified on 2024-04-25.
module foundation.equivalences-cospans where
Imports
open import foundation.cospans open import foundation.dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopy-induction open import foundation.morphisms-cospans open import foundation.structure-identity-principle open import foundation.univalence open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.torsorial-type-families
Idea
An equivalence of cospans¶ from
cospans (X , f , g)
to (Y , h , k)
between types
A
and B
consists of an equivalence
e : X ≃ Y
such that the triangles
e e
X ----> Y X ----> Y
\ / \ /
f \ / h g \ / k
∨ ∨ ∨ ∨
A B
both commute.
Definitions
Equivalences of cospans
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} where equiv-cospan : cospan l3 A B → cospan l4 A B → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) equiv-cospan c d = Σ ( codomain-cospan c ≃ codomain-cospan d) ( λ e → coherence-hom-cospan c d (map-equiv e))
The identity equivalence of cospans
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} where id-equiv-cospan : (c : cospan l3 A B) → equiv-cospan c c pr1 (id-equiv-cospan c) = id-equiv pr1 (pr2 (id-equiv-cospan c)) = refl-htpy pr2 (pr2 (id-equiv-cospan c)) = refl-htpy
Properties
Characterizing equality of cospans
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} where equiv-eq-cospan : (c d : cospan l3 A B) → c = d → equiv-cospan c d equiv-eq-cospan c .c refl = id-equiv-cospan c is-torsorial-equiv-cospan : (c : cospan l3 A B) → is-torsorial (equiv-cospan c) is-torsorial-equiv-cospan c = is-torsorial-Eq-structure ( is-torsorial-equiv (pr1 c)) ( codomain-cospan c , id-equiv) ( is-torsorial-Eq-structure ( is-torsorial-htpy' (left-map-cospan c)) ( left-map-cospan c , refl-htpy) ( is-torsorial-htpy' (right-map-cospan c))) is-equiv-equiv-eq-cospan : (c d : cospan l3 A B) → is-equiv (equiv-eq-cospan c d) is-equiv-equiv-eq-cospan c = fundamental-theorem-id (is-torsorial-equiv-cospan c) (equiv-eq-cospan c) extensionality-cospan : (c d : cospan l3 A B) → (c = d) ≃ (equiv-cospan c d) pr1 (extensionality-cospan c d) = equiv-eq-cospan c d pr2 (extensionality-cospan c d) = is-equiv-equiv-eq-cospan c d eq-equiv-cospan : (c d : cospan l3 A B) → equiv-cospan c d → c = d eq-equiv-cospan c d = map-inv-equiv (extensionality-cospan c d)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).