Morphisms of coforks
Content created by Vojtěch Štěpančík.
Created on 2024-04-16.
Last modified on 2024-04-16.
module synthetic-homotopy-theory.morphisms-coforks-under-morphisms-double-arrows where
Imports
open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.double-arrows open import foundation.homotopies open import foundation.morphisms-arrows open import foundation.morphisms-double-arrows open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import synthetic-homotopy-theory.coforks
Idea
Consider two double arrows f, g : A → B
and
h, k : U → V
, equipped with coforks
c : B → X
and c' : V → Y
, respectively, and a
morphism of double arrows
e : (f, g) → (h, k)
.
Then a
morphism of coforks¶
under e
is a triple (m, H, K)
, with m : X → Y
a map of vertices of the
coforks, H
a homotopy witnessing that the
bottom square in the diagram
i
A --------> U
| | | |
f | | g h | | k
| | | |
∨ ∨ ∨ ∨
B --------> V
| j |
c | | c'
| |
∨ ∨
X --------> Y
m
commutes, and K
a coherence
datum “filling the inside” — we have two stacks of squares
i i
A --------> U A --------> U
| | | |
f | | h g | | k
| | | |
∨ ∨ ∨ ∨
B --------> V B --------> V
| j | | j |
c | | c' c | | c'
| | | |
∨ ∨ ∨ ∨
X --------> Y X --------> Y
m m
which share the top map i
and the bottom square, and the coherences of c
and
c'
filling the sides; that gives the homotopies
i i
A A A --------> U A --------> U
| | | |
f | f | | h | k
| | | |
∨ ∨ j ∨ ∨
B ~ B --------> V ~ V ~ V
| | | |
c | | c' | c' | c'
| | | |
∨ ∨ ∨ ∨
X --------> Y Y Y Y
m
and
i
A A A A --------> U
| | | |
f | g | g | | k
| | | |
∨ ∨ ∨ j ∨
B ~ B ~ B --------> V ~ V
| | | |
c | c | | c' | c'
| | | |
∨ ∨ ∨ ∨
X --------> Y X --------> Y Y Y ,
m m
which are required to be homotopic.
Definitions
Morphisms of coforks under morphisms of double arrows
module _ {l1 l2 l3 l4 l5 l6 : Level} {a : double-arrow l1 l2} {X : UU l3} (c : cofork a X) {a' : double-arrow l4 l5} {Y : UU l6} (c' : cofork a' Y) (h : hom-double-arrow a a') where coherence-map-cofork-hom-cofork-hom-double-arrow : (X → Y) → UU (l2 ⊔ l6) coherence-map-cofork-hom-cofork-hom-double-arrow u = coherence-square-maps ( codomain-map-hom-double-arrow a a' h) ( map-cofork a c) ( map-cofork a' c') ( u) coherence-hom-cofork-hom-double-arrow : (u : X → Y) → coherence-map-cofork-hom-cofork-hom-double-arrow u → UU (l1 ⊔ l6) coherence-hom-cofork-hom-double-arrow u H = ( ( H ·r (left-map-double-arrow a)) ∙h ( ( map-cofork a' c') ·l ( left-square-hom-double-arrow a a' h)) ∙h ( (coh-cofork a' c') ·r (domain-map-hom-double-arrow a a' h))) ~ ( ( u ·l (coh-cofork a c)) ∙h ( H ·r (right-map-double-arrow a)) ∙h ( (map-cofork a' c') ·l (right-square-hom-double-arrow a a' h))) hom-cofork-hom-double-arrow : UU (l1 ⊔ l2 ⊔ l3 ⊔ l6) hom-cofork-hom-double-arrow = Σ ( X → Y) ( λ u → Σ ( coherence-map-cofork-hom-cofork-hom-double-arrow u) ( coherence-hom-cofork-hom-double-arrow u))
Components of a morphism of coforks under a morphism of double arrows
module _ {l1 l2 l3 l4 l5 l6 : Level} {a : double-arrow l1 l2} {X : UU l3} (c : cofork a X) {a' : double-arrow l4 l5} {Y : UU l6} (c' : cofork a' Y) {h : hom-double-arrow a a'} (m : hom-cofork-hom-double-arrow c c' h) where map-hom-cofork-hom-double-arrow : X → Y map-hom-cofork-hom-double-arrow = pr1 m coh-map-cofork-hom-cofork-hom-double-arrow : coherence-map-cofork-hom-cofork-hom-double-arrow c c' h ( map-hom-cofork-hom-double-arrow) coh-map-cofork-hom-cofork-hom-double-arrow = pr1 (pr2 m) hom-map-cofork-hom-cofork-hom-double-arrow : hom-arrow (map-cofork a c) (map-cofork a' c') pr1 hom-map-cofork-hom-cofork-hom-double-arrow = codomain-map-hom-double-arrow a a' h pr1 (pr2 hom-map-cofork-hom-cofork-hom-double-arrow) = map-hom-cofork-hom-double-arrow pr2 (pr2 hom-map-cofork-hom-cofork-hom-double-arrow) = coh-map-cofork-hom-cofork-hom-double-arrow coh-hom-cofork-hom-double-arrow : coherence-hom-cofork-hom-double-arrow c c' h ( map-hom-cofork-hom-double-arrow) ( coh-map-cofork-hom-cofork-hom-double-arrow) coh-hom-cofork-hom-double-arrow = pr2 (pr2 m)
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).