Morphisms of coforks
Content created by Vojtěch Štěpančík.
Created on 2024-04-16.
Last modified on 2024-04-16.
module synthetic-homotopy-theory.morphisms-coforks-under-morphisms-double-arrows where
Imports
open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.double-arrows open import foundation.homotopies open import foundation.morphisms-arrows open import foundation.morphisms-double-arrows open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import synthetic-homotopy-theory.coforks
Idea
Consider two double arrows f, g : A → B and
h, k : U → V, equipped with coforks
c : B → X and c' : V → Y, respectively, and a
morphism of double arrows
e : (f, g) → (h, k).
Then a
morphism of coforks¶
under e is a triple (m, H, K), with m : X → Y a map of vertices of the
coforks, H a homotopy witnessing that the
bottom square in the diagram
           i
     A --------> U
    | |         | |
  f | | g     h | | k
    | |         | |
    ∨ ∨         ∨ ∨
     B --------> V
     |     j     |
   c |           | c'
     |           |
     ∨           ∨
     X --------> Y
           m
commutes, and K a coherence
datum “filling the inside” — we have two stacks of squares
           i                        i
     A --------> U            A --------> U
     |           |            |           |
   f |           | h        g |           | k
     |           |            |           |
     ∨           ∨            ∨           ∨
     B --------> V            B --------> V
     |     j     |            |     j     |
   c |           | c'       c |           | c'
     |           |            |           |
     ∨           ∨            ∨           ∨
     X --------> Y            X --------> Y
           m                        m
which share the top map i and the bottom square, and the coherences of c and
c' filling the sides; that gives the homotopies
                                                i                 i
     A                  A                 A --------> U     A --------> U
     |                  |                             |                 |
   f |                f |                             | h               | k
     |                  |                             |                 |
     ∨                  ∨     j                       ∨                 ∨
     B         ~        B --------> V       ~         V        ~        V
     |                              |                 |                 |
   c |                              | c'              | c'              | c'
     |                              |                 |                 |
     ∨                              ∨                 ∨                 ∨
     X --------> Y                  Y                 Y                 Y
           m
and
                                                                  i
     A                 A               A                    A --------> U
     |                 |               |                                |
   f |               g |             g |                                | k
     |                 |               |                                |
     ∨                 ∨               ∨     j                          ∨
     B         ~       B       ~       B --------> V           ~        V
     |                 |                           |                    |
   c |               c |                           | c'                 | c'
     |                 |                           |                    |
     ∨                 ∨                           ∨                    ∨
     X --------> Y     X --------> Y               Y                    Y ,
           m                 m
which are required to be homotopic.
Definitions
Morphisms of coforks under morphisms of double arrows
module _ {l1 l2 l3 l4 l5 l6 : Level} {a : double-arrow l1 l2} {X : UU l3} (c : cofork a X) {a' : double-arrow l4 l5} {Y : UU l6} (c' : cofork a' Y) (h : hom-double-arrow a a') where coherence-map-cofork-hom-cofork-hom-double-arrow : (X → Y) → UU (l2 ⊔ l6) coherence-map-cofork-hom-cofork-hom-double-arrow u = coherence-square-maps ( codomain-map-hom-double-arrow a a' h) ( map-cofork a c) ( map-cofork a' c') ( u) coherence-hom-cofork-hom-double-arrow : (u : X → Y) → coherence-map-cofork-hom-cofork-hom-double-arrow u → UU (l1 ⊔ l6) coherence-hom-cofork-hom-double-arrow u H = ( ( H ·r (left-map-double-arrow a)) ∙h ( ( map-cofork a' c') ·l ( left-square-hom-double-arrow a a' h)) ∙h ( (coh-cofork a' c') ·r (domain-map-hom-double-arrow a a' h))) ~ ( ( u ·l (coh-cofork a c)) ∙h ( H ·r (right-map-double-arrow a)) ∙h ( (map-cofork a' c') ·l (right-square-hom-double-arrow a a' h))) hom-cofork-hom-double-arrow : UU (l1 ⊔ l2 ⊔ l3 ⊔ l6) hom-cofork-hom-double-arrow = Σ ( X → Y) ( λ u → Σ ( coherence-map-cofork-hom-cofork-hom-double-arrow u) ( coherence-hom-cofork-hom-double-arrow u))
Components of a morphism of coforks under a morphism of double arrows
module _ {l1 l2 l3 l4 l5 l6 : Level} {a : double-arrow l1 l2} {X : UU l3} (c : cofork a X) {a' : double-arrow l4 l5} {Y : UU l6} (c' : cofork a' Y) {h : hom-double-arrow a a'} (m : hom-cofork-hom-double-arrow c c' h) where map-hom-cofork-hom-double-arrow : X → Y map-hom-cofork-hom-double-arrow = pr1 m coh-map-cofork-hom-cofork-hom-double-arrow : coherence-map-cofork-hom-cofork-hom-double-arrow c c' h ( map-hom-cofork-hom-double-arrow) coh-map-cofork-hom-cofork-hom-double-arrow = pr1 (pr2 m) hom-map-cofork-hom-cofork-hom-double-arrow : hom-arrow (map-cofork a c) (map-cofork a' c') pr1 hom-map-cofork-hom-cofork-hom-double-arrow = codomain-map-hom-double-arrow a a' h pr1 (pr2 hom-map-cofork-hom-cofork-hom-double-arrow) = map-hom-cofork-hom-double-arrow pr2 (pr2 hom-map-cofork-hom-cofork-hom-double-arrow) = coh-map-cofork-hom-cofork-hom-double-arrow coh-hom-cofork-hom-double-arrow : coherence-hom-cofork-hom-double-arrow c c' h ( map-hom-cofork-hom-double-arrow) ( coh-map-cofork-hom-cofork-hom-double-arrow) coh-hom-cofork-hom-double-arrow = pr2 (pr2 m)
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).