Subsets of semirings
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-03-18.
Last modified on 2024-04-20.
module ring-theory.subsets-semirings where
Imports
open import foundation.identity-types open import foundation.propositional-extensionality open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import ring-theory.semirings
Idea
A subset of a semiring is a subtype of the underlying type of a semiring
Definition
Subsets of semirings
subset-Semiring : (l : Level) {l1 : Level} (R : Semiring l1) → UU (lsuc l ⊔ l1) subset-Semiring l R = subtype l (type-Semiring R) is-set-subset-Semiring : (l : Level) {l1 : Level} (R : Semiring l1) → is-set (subset-Semiring l R) is-set-subset-Semiring l R = is-set-function-type is-set-type-Prop module _ {l1 l2 : Level} (R : Semiring l1) (S : subset-Semiring l2 R) where is-in-subset-Semiring : type-Semiring R → UU l2 is-in-subset-Semiring = is-in-subtype S is-prop-is-in-subset-Semiring : (x : type-Semiring R) → is-prop (is-in-subset-Semiring x) is-prop-is-in-subset-Semiring = is-prop-is-in-subtype S type-subset-Semiring : UU (l1 ⊔ l2) type-subset-Semiring = type-subtype S inclusion-subset-Semiring : type-subset-Semiring → type-Semiring R inclusion-subset-Semiring = inclusion-subtype S ap-inclusion-subset-Semiring : (x y : type-subset-Semiring) → x = y → (inclusion-subset-Semiring x = inclusion-subset-Semiring y) ap-inclusion-subset-Semiring = ap-inclusion-subtype S is-in-subset-inclusion-subset-Semiring : (x : type-subset-Semiring) → is-in-subset-Semiring (inclusion-subset-Semiring x) is-in-subset-inclusion-subset-Semiring = is-in-subtype-inclusion-subtype S is-closed-under-eq-subset-Semiring : {x y : type-Semiring R} → is-in-subset-Semiring x → (x = y) → is-in-subset-Semiring y is-closed-under-eq-subset-Semiring = is-closed-under-eq-subtype S is-closed-under-eq-subset-Semiring' : {x y : type-Semiring R} → is-in-subset-Semiring y → (x = y) → is-in-subset-Semiring x is-closed-under-eq-subset-Semiring' = is-closed-under-eq-subtype' S
The condition that a subset contains zero
module _ {l1 l2 : Level} (R : Semiring l1) (S : subset-Semiring l2 R) where contains-zero-subset-Semiring : UU l2 contains-zero-subset-Semiring = is-in-subtype S (zero-Semiring R)
The condition that a subset contains one
contains-one-subset-Semiring : UU l2 contains-one-subset-Semiring = is-in-subtype S (one-Semiring R)
The condition that a subset is closed under addition
is-closed-under-addition-subset-Semiring : UU (l1 ⊔ l2) is-closed-under-addition-subset-Semiring = (x y : type-Semiring R) → is-in-subtype S x → is-in-subtype S y → is-in-subtype S (add-Semiring R x y)
The condition that a subset is closed under multiplication
is-closed-under-multiplication-subset-Semiring : UU (l1 ⊔ l2) is-closed-under-multiplication-subset-Semiring = (x y : type-Semiring R) → is-in-subtype S x → is-in-subtype S y → is-in-subtype S (mul-Semiring R x y)
The condition that a subset is closed under multiplication from the left by an arbitrary element
is-closed-under-left-multiplication-subset-Semiring : UU (l1 ⊔ l2) is-closed-under-left-multiplication-subset-Semiring = (x y : type-Semiring R) → is-in-subtype S y → is-in-subtype S (mul-Semiring R x y)
The condition that a subset is closed-under-multiplication from the right by an arbitrary element
is-closed-under-right-multiplication-subset-Semiring : UU (l1 ⊔ l2) is-closed-under-right-multiplication-subset-Semiring = (x y : type-Semiring R) → is-in-subtype S x → is-in-subtype S (mul-Semiring R x y)
Recent changes
- 2024-04-20. Fredrik Bakke. chore: Remove redundant parentheses in universe level expressions (#1125).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).
- 2023-03-19. Egbert Rijke. Refactoring ideals in semirings, rings, commutative semirings, and commutative rings; refactoring a corollary of the binomial theorem; constructing the nilradical of an ideal in a commutative ring (#525).
- 2023-03-18. Egbert Rijke and Maša Žaucer. Central elements in semigroups, monoids, groups, semirings, and rings; ideals; nilpotent elements in semirings, rings, commutative semirings, and commutative rings; the nilradical of a commutative ring (#516).