Finite sequences in commutative semirings

Content created by Louis Wasserman.

Created on 2025-05-14.
Last modified on 2025-05-14.

module linear-algebra.finite-sequences-in-commutative-semirings where
Imports
open import commutative-algebra.commutative-semirings

open import elementary-number-theory.natural-numbers

open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.commutative-monoids
open import group-theory.monoids
open import group-theory.semigroups

open import linear-algebra.finite-sequences-in-semirings

Idea

Finite sequences in a commutative semiring R are finite sequences in the underlying type of R.

Definitions

module _
  {l : Level} (R : Commutative-Semiring l)
  where

  fin-sequence-type-Commutative-Semiring :   UU l
  fin-sequence-type-Commutative-Semiring =
    fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

  head-fin-sequence-type-Commutative-Semiring :
    (n : )  fin-sequence-type-Commutative-Semiring (succ-ℕ n) 
    type-Commutative-Semiring R
  head-fin-sequence-type-Commutative-Semiring =
    head-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

  tail-fin-sequence-type-Commutative-Semiring :
    (n : )  fin-sequence-type-Commutative-Semiring (succ-ℕ n) 
    fin-sequence-type-Commutative-Semiring n
  tail-fin-sequence-type-Commutative-Semiring =
    tail-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

  cons-fin-sequence-type-Commutative-Semiring :
    (n : )  type-Commutative-Semiring R 
    fin-sequence-type-Commutative-Semiring n 
    fin-sequence-type-Commutative-Semiring (succ-ℕ n)
  cons-fin-sequence-type-Commutative-Semiring =
    cons-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

  snoc-fin-sequence-type-Commutative-Semiring :
    (n : )  fin-sequence-type-Commutative-Semiring n 
    type-Commutative-Semiring R 
    fin-sequence-type-Commutative-Semiring (succ-ℕ n)
  snoc-fin-sequence-type-Commutative-Semiring =
    snoc-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

The zero finite sequence in a commutative semiring

module _
  {l : Level} (R : Commutative-Semiring l)
  where

  zero-fin-sequence-type-Commutative-Semiring :
    (n : )  fin-sequence-type-Commutative-Semiring R n
  zero-fin-sequence-type-Commutative-Semiring n i = zero-Commutative-Semiring R

Pointwise addition of finite sequences in a commutative semiring

module _
  {l : Level} (R : Commutative-Semiring l)
  where

  add-fin-sequence-type-Commutative-Semiring :
    (n : ) (v w : fin-sequence-type-Commutative-Semiring R n) 
    fin-sequence-type-Commutative-Semiring R n
  add-fin-sequence-type-Commutative-Semiring =
    add-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

Properties of pointwise addition

Associativity of pointwise addition

module _
  {l : Level} (R : Commutative-Semiring l)
  where

  associative-add-fin-sequence-type-Commutative-Semiring :
    (n : ) (v1 v2 v3 : fin-sequence-type-Commutative-Semiring R n) 
    ( add-fin-sequence-type-Commutative-Semiring R n
      ( add-fin-sequence-type-Commutative-Semiring R n v1 v2) v3) 
    ( add-fin-sequence-type-Commutative-Semiring R n v1
      ( add-fin-sequence-type-Commutative-Semiring R n v2 v3))
  associative-add-fin-sequence-type-Commutative-Semiring =
    associative-add-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

Unit laws of pointwise addition

module _
  {l : Level} (R : Commutative-Semiring l)
  where

  left-unit-law-add-fin-sequence-type-Commutative-Semiring :
    (n : ) (v : fin-sequence-type-Commutative-Semiring R n) 
    add-fin-sequence-type-Commutative-Semiring R n
      ( zero-fin-sequence-type-Commutative-Semiring R n) v  v
  left-unit-law-add-fin-sequence-type-Commutative-Semiring =
    left-unit-law-add-fin-sequence-type-Semiring
      ( semiring-Commutative-Semiring R)

  right-unit-law-add-fin-sequence-type-Commutative-Semiring :
    (n : ) (v : fin-sequence-type-Commutative-Semiring R n) 
    add-fin-sequence-type-Commutative-Semiring R n v
      ( zero-fin-sequence-type-Commutative-Semiring R n)  v
  right-unit-law-add-fin-sequence-type-Commutative-Semiring =
    right-unit-law-add-fin-sequence-type-Semiring
      ( semiring-Commutative-Semiring R)

Commutativity of pointwise addition

module _
  {l : Level} (R : Commutative-Semiring l)
  where

  commutative-add-fin-sequence-type-Commutative-Semiring :
    (n : ) (v w : fin-sequence-type-Commutative-Semiring R n) 
    add-fin-sequence-type-Commutative-Semiring R n v w 
    add-fin-sequence-type-Commutative-Semiring R n w v
  commutative-add-fin-sequence-type-Commutative-Semiring =
    commutative-add-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

The commutative monoid of pointwise addition

module _
  {l : Level} (R : Commutative-Semiring l)
  where

  semigroup-fin-sequence-type-Commutative-Semiring :   Semigroup l
  semigroup-fin-sequence-type-Commutative-Semiring =
    semigroup-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

  monoid-fin-sequence-type-Commutative-Semiring :   Monoid l
  monoid-fin-sequence-type-Commutative-Semiring =
    monoid-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)

  commutative-monoid-fin-sequence-type-Commutative-Semiring :
      Commutative-Monoid l
  commutative-monoid-fin-sequence-type-Commutative-Semiring =
    commutative-monoid-fin-sequence-type-Semiring
      ( semiring-Commutative-Semiring R)

Recent changes