Homomorphisms of large frames
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-05-12.
Last modified on 2023-11-24.
module order-theory.homomorphisms-large-frames where
Imports
open import foundation.identity-types open import foundation.universe-levels open import order-theory.homomorphisms-large-meet-semilattices open import order-theory.homomorphisms-large-suplattices open import order-theory.large-frames
Idea
A homomorphism of large frames from K
to L
is an order preserving map
from K
to L
which preserves meets, the top element, and suprema.
Definitions
Homomorphisms of frames
module _ {αK αL : Level → Level} {βK βL : Level → Level → Level} {γ : Level} (K : Large-Frame αK βK γ) (L : Large-Frame αL βL γ) where record hom-Large-Frame : UUω where field hom-large-meet-semilattice-hom-Large-Frame : hom-Large-Meet-Semilattice ( large-meet-semilattice-Large-Frame K) ( large-meet-semilattice-Large-Frame L) preserves-sup-hom-Large-Frame : preserves-sup-hom-Large-Poset ( large-suplattice-Large-Frame K) ( large-suplattice-Large-Frame L) ( hom-large-poset-hom-Large-Meet-Semilattice ( hom-large-meet-semilattice-hom-Large-Frame)) open hom-Large-Frame public module _ (f : hom-Large-Frame) where map-hom-Large-Frame : {l1 : Level} → type-Large-Frame K l1 → type-Large-Frame L l1 map-hom-Large-Frame = map-hom-Large-Meet-Semilattice ( large-meet-semilattice-Large-Frame K) ( large-meet-semilattice-Large-Frame L) ( hom-large-meet-semilattice-hom-Large-Frame f) preserves-order-hom-Large-Frame : {l1 l2 : Level} (x : type-Large-Frame K l1) (y : type-Large-Frame K l2) → leq-Large-Frame K x y → leq-Large-Frame L (map-hom-Large-Frame x) (map-hom-Large-Frame y) preserves-order-hom-Large-Frame = preserves-order-hom-Large-Meet-Semilattice ( large-meet-semilattice-Large-Frame K) ( large-meet-semilattice-Large-Frame L) ( hom-large-meet-semilattice-hom-Large-Frame f) preserves-meets-hom-Large-Frame : {l1 l2 : Level} (x : type-Large-Frame K l1) (y : type-Large-Frame K l2) → map-hom-Large-Frame (meet-Large-Frame K x y) = meet-Large-Frame L (map-hom-Large-Frame x) (map-hom-Large-Frame y) preserves-meets-hom-Large-Frame = preserves-meets-hom-Large-Meet-Semilattice ( hom-large-meet-semilattice-hom-Large-Frame f) preserves-top-hom-Large-Frame : map-hom-Large-Frame (top-Large-Frame K) = top-Large-Frame L preserves-top-hom-Large-Frame = preserves-top-hom-Large-Meet-Semilattice ( hom-large-meet-semilattice-hom-Large-Frame f)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-05-12. Egbert Rijke. Subframes and quotient locales via nuclei (#613).