Path-split maps
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-02-07.
Last modified on 2024-03-12.
module foundation-core.path-split-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.coherently-invertible-maps open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.sections
Idea
A map f : A → B
is said to be path split if it has a
section and its
action on identifications
x = y → f x = f y
has a section for each x y : A
. By the
fundamental theorem of identity types,
it follows that a map is path-split if and only if it is an
equivalence.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-path-split : UU (l1 ⊔ l2) is-path-split = section f × ((x y : A) → section (ap f {x = x} {y = y}))
Properties
A map is path-split if and only if it is an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where abstract is-path-split-is-equiv : is-equiv f → is-path-split f pr1 (is-path-split-is-equiv is-equiv-f) = pr1 is-equiv-f pr2 (is-path-split-is-equiv is-equiv-f) x y = pr1 (is-emb-is-equiv is-equiv-f x y) abstract is-coherently-invertible-is-path-split : is-path-split f → is-coherently-invertible f pr1 (is-coherently-invertible-is-path-split ((g , G) , s)) = g pr1 (pr2 (is-coherently-invertible-is-path-split ((g , G) , s))) = G pr1 (pr2 (pr2 (is-coherently-invertible-is-path-split ((g , G) , s)))) x = pr1 (s (g (f x)) x) (G (f x)) pr2 (pr2 (pr2 (is-coherently-invertible-is-path-split ((g , G) , s)))) x = inv (pr2 (s (g (f x)) x) (G (f x))) abstract is-equiv-is-path-split : is-path-split f → is-equiv f is-equiv-is-path-split = is-equiv-is-coherently-invertible ∘ is-coherently-invertible-is-path-split
See also
- For the notion of biinvertible maps see
foundation.equivalences
. - For the notion of coherently invertible maps, also known as half-adjoint
equivalences, see
foundation.coherently-invertible-maps
. - For the notion of maps with contractible fibers see
foundation.contractible-maps
.
References
- [Shu14]
- Mike Shulman. Universal properties without function extensionality. Blog post, 11 2014. URL: https://homotopytypetheory.org/2014/11/02/universal-properties-without-function-extensionality/.
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
Recent changes
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2024-01-31. Fredrik Bakke and Egbert Rijke. Transport-split and preunivalent type families (#1013).
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-06-28. Fredrik Bakke. Localizations and other things (#655).
- 2023-06-15. Egbert Rijke. Replace
isretr
withis-retraction
andissec
withis-section
(#659).