Interval subposets
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Garrett Figueroa.
Created on 2022-03-17.
Last modified on 2024-11-20.
module order-theory.interval-subposets where
Imports
open import foundation.dependent-pair-types open import foundation.inhabited-types open import foundation.propositions open import foundation.universe-levels open import foundation-core.cartesian-product-types open import order-theory.posets open import order-theory.subposets
Idea
Given two elements x
and y
in a poset X
, the interval subposet
[x, y]
is the subposet of X
consisting of all elements z
in X
such that
x ≤ z
and z ≤ y
. Note that interval subposets need not be linearly ordered.
Definition
module _ {l1 l2 : Level} (X : Poset l1 l2) (x y : type-Poset X) where is-in-interval-Poset : (z : type-Poset X) → Prop l2 is-in-interval-Poset z = product-Prop (leq-prop-Poset X x z) (leq-prop-Poset X z y) poset-interval-Subposet : Poset (l1 ⊔ l2) l2 poset-interval-Subposet = poset-Subposet X is-in-interval-Poset
The predicate of an interval being inhabited
module _ {l1 l2 : Level} (X : Poset l1 l2) (x y : type-Poset X) where is-inhabited-interval : UU (l1 ⊔ l2) is-inhabited-interval = is-inhabited (type-Poset (poset-interval-Subposet X x y)) module _ {l1 l2 : Level} (X : Poset l1 l2) where inhabited-interval : UU (l1 ⊔ l2) inhabited-interval = Σ (type-Poset X × type-Poset X) λ (p , q) → (is-inhabited-interval X p q)
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).
- 2024-11-14. Garrett Figueroa and Egbert Rijke. Incidence algebras (#1221).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-05-07. Egbert Rijke. Cleaning up order theory some more (#599).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 3 (#593).