Interval subposets

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Garrett Figueroa.

Created on 2022-03-17.
Last modified on 2024-11-20.

module order-theory.interval-subposets where
Imports
open import foundation.dependent-pair-types
open import foundation.inhabited-types
open import foundation.propositions
open import foundation.universe-levels

open import foundation-core.cartesian-product-types

open import order-theory.posets
open import order-theory.subposets

Idea

Given two elements x and y in a poset X, the interval subposet [x, y] is the subposet of X consisting of all elements z in X such that x ≤ z and z ≤ y. Note that interval subposets need not be linearly ordered.

Definition

module _
  {l1 l2 : Level} (X : Poset l1 l2) (x y : type-Poset X)
  where

  is-in-interval-Poset : (z : type-Poset X)  Prop l2
  is-in-interval-Poset z =
    product-Prop (leq-prop-Poset X x z) (leq-prop-Poset X z y)

  poset-interval-Subposet : Poset (l1  l2) l2
  poset-interval-Subposet = poset-Subposet X is-in-interval-Poset

The predicate of an interval being inhabited

module _
  {l1 l2 : Level} (X : Poset l1 l2) (x y : type-Poset X)
  where

  is-inhabited-interval : UU (l1  l2)
  is-inhabited-interval =
    is-inhabited (type-Poset (poset-interval-Subposet X x y))

module _
  {l1 l2 : Level} (X : Poset l1 l2)
  where

  inhabited-interval : UU (l1  l2)
  inhabited-interval =
    Σ (type-Poset X × type-Poset X) λ (p , q)  (is-inhabited-interval X p q)

Recent changes