The universal property of flat discrete crisp types
Content created by Fredrik Bakke.
Created on 2024-09-06.
Last modified on 2024-09-23.
{-# OPTIONS --cohesion --flat-split #-} module modal-type-theory.universal-property-flat-discrete-crisp-types where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.identity-types open import foundation.postcomposition-functions open import foundation.universal-property-equivalences open import foundation.universe-levels open import modal-type-theory.action-on-identifications-crisp-functions open import modal-type-theory.crisp-function-types open import modal-type-theory.flat-discrete-crisp-types open import modal-type-theory.flat-modality open import modal-type-theory.functoriality-flat-modality
Idea
The
universal property¶
of a flat discrete crisp type
A
states that under the flat modality
♭
, A
is colocal
at the counit of ♭
.
By this we mean that for every crisp type
B
the map
coev-flat : ♭ (A → ♭ B) → ♭ (A → B)
is an equivalence.
Definitions
The universal property of flat discrete crisp types
coev-flat : {@♭ l1 l2 : Level} {@♭ A : UU l1} {@♭ B : UU l2} → ♭ (A → ♭ B) → ♭ (A → B) coev-flat {A = A} (intro-flat f) = intro-flat (postcomp A counit-flat f) universal-property-flat-discrete-crisp-type : {@♭ l1 : Level} (@♭ A : UU l1) → UUω universal-property-flat-discrete-crisp-type A = {@♭ l : Level} {@♭ B : UU l} → is-equiv (coev-flat {A = A} {B = B})
Properties
Flat discrete crisp types satisfy the universal property of flat discrete crisp types
This is Corollary 6.15 of [Shu18].
module _ {@♭ l : Level} {@♭ A : UU l} where abstract universal-property-is-flat-discrete-crisp : @♭ is-flat-discrete-crisp A → universal-property-flat-discrete-crisp-type A universal-property-is-flat-discrete-crisp is-disc-A {B = B} = is-equiv-htpy-equiv ( ( action-flat-equiv ( equiv-precomp (inv-equiv (counit-flat , is-disc-A)) B)) ∘e ( equiv-action-flat-map-postcomp-counit-flat) ∘e ( action-flat-equiv (equiv-precomp (counit-flat , is-disc-A) (♭ B)))) ( λ where (intro-flat f) → crisp-ap ( intro-flat) ( eq-htpy ( λ x → ap ( counit-flat ∘ f) ( inv (is-section-map-inv-is-equiv is-disc-A x)))))
See also
References
- [Shu18]
- Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. Mathematical Structures in Computer Science, 28(6):856–941, 06 2018. arXiv:1509.07584, doi:10.1017/S0960129517000147.
Recent changes
- 2024-09-23. Fredrik Bakke. Some typos, wording improvements, and brief prose additions (#1186).
- 2024-09-06. Fredrik Bakke. Basic properties of the flat modality (#1078).