Full maps between precategories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-20.
Last modified on 2024-01-27.
module category-theory.full-maps-precategories where
Imports
open import category-theory.maps-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.function-types open import foundation.iterated-dependent-product-types open import foundation.propositions open import foundation.surjective-maps open import foundation.universe-levels
Idea
A map between
precategories C
and D
is full if
it’s a surjection on
hom-sets.
Definition
The predicate on maps between precategories of being full
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : map-Precategory C D) where is-full-map-Precategory : UU (l1 ⊔ l2 ⊔ l4) is-full-map-Precategory = (x y : obj-Precategory C) → is-surjective (hom-map-Precategory C D F {x} {y}) is-prop-is-full-map-Precategory : is-prop is-full-map-Precategory is-prop-is-full-map-Precategory = is-prop-iterated-Π 2 ( λ x y → is-prop-is-surjective (hom-map-Precategory C D F {x} {y})) is-full-prop-map-Precategory : Prop (l1 ⊔ l2 ⊔ l4) pr1 is-full-prop-map-Precategory = is-full-map-Precategory pr2 is-full-prop-map-Precategory = is-prop-is-full-map-Precategory
The type of full maps between two precategories
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) where full-map-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) full-map-Precategory = Σ (map-Precategory C D) (is-full-map-Precategory C D) map-full-map-Precategory : full-map-Precategory → map-Precategory C D map-full-map-Precategory = pr1 is-full-full-map-Precategory : (F : full-map-Precategory) → is-full-map-Precategory C D (map-full-map-Precategory F) is-full-full-map-Precategory = pr2 obj-full-map-Precategory : full-map-Precategory → obj-Precategory C → obj-Precategory D obj-full-map-Precategory = obj-map-Precategory C D ∘ map-full-map-Precategory hom-full-map-Precategory : (F : full-map-Precategory) {x y : obj-Precategory C} → hom-Precategory C x y → hom-Precategory D ( obj-full-map-Precategory F x) ( obj-full-map-Precategory F y) hom-full-map-Precategory = hom-map-Precategory C D ∘ map-full-map-Precategory
Recent changes
- 2024-01-27. Egbert Rijke. Fix “The predicate of” section headers (#1010).
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-10-20. Fredrik Bakke and Egbert Rijke. Small subcategories (#861).