Full maps between precategories

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-10-20.
Last modified on 2024-01-27.

module category-theory.full-maps-precategories where
Imports
open import category-theory.maps-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.iterated-dependent-product-types
open import foundation.propositions
open import foundation.surjective-maps
open import foundation.universe-levels

Idea

A map between precategories C and D is full if it’s a surjection on hom-sets.

Definition

The predicate on maps between precategories of being full

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2)
  (D : Precategory l3 l4)
  (F : map-Precategory C D)
  where

  is-full-map-Precategory : UU (l1  l2  l4)
  is-full-map-Precategory =
    (x y : obj-Precategory C) 
    is-surjective (hom-map-Precategory C D F {x} {y})

  is-prop-is-full-map-Precategory : is-prop is-full-map-Precategory
  is-prop-is-full-map-Precategory =
    is-prop-iterated-Π 2
      ( λ x y  is-prop-is-surjective (hom-map-Precategory C D F {x} {y}))

  is-full-prop-map-Precategory : Prop (l1  l2  l4)
  pr1 is-full-prop-map-Precategory = is-full-map-Precategory
  pr2 is-full-prop-map-Precategory = is-prop-is-full-map-Precategory

The type of full maps between two precategories

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2)
  (D : Precategory l3 l4)
  where

  full-map-Precategory : UU (l1  l2  l3  l4)
  full-map-Precategory =
    Σ (map-Precategory C D) (is-full-map-Precategory C D)

  map-full-map-Precategory :
    full-map-Precategory  map-Precategory C D
  map-full-map-Precategory = pr1

  is-full-full-map-Precategory :
    (F : full-map-Precategory) 
    is-full-map-Precategory C D (map-full-map-Precategory F)
  is-full-full-map-Precategory = pr2

  obj-full-map-Precategory :
    full-map-Precategory  obj-Precategory C  obj-Precategory D
  obj-full-map-Precategory =
    obj-map-Precategory C D  map-full-map-Precategory

  hom-full-map-Precategory :
    (F : full-map-Precategory) {x y : obj-Precategory C} 
    hom-Precategory C x y 
    hom-Precategory D
      ( obj-full-map-Precategory F x)
      ( obj-full-map-Precategory F y)
  hom-full-map-Precategory =
    hom-map-Precategory C D  map-full-map-Precategory

Recent changes