Anafunctors between categories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-13.
Last modified on 2023-09-26.
module category-theory.anafunctors-categories where
Imports
open import category-theory.anafunctors-precategories open import category-theory.categories open import category-theory.functors-categories open import foundation.dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels
Idea
An anafunctor is a functor that is only defined up to isomorphism.
Definition
anafunctor-Category : {l1 l2 l3 l4 : Level} (l : Level) → Category l1 l2 → Category l3 l4 → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l) anafunctor-Category l C D = anafunctor-Precategory l (precategory-Category C) (precategory-Category D) module _ {l1 l2 l3 l4 l5 : Level} (C : Category l1 l2) (D : Category l3 l4) (F : anafunctor-Category l5 C D) where object-anafunctor-Category : obj-Category C → obj-Category D → UU l5 object-anafunctor-Category = object-anafunctor-Precategory ( precategory-Category C) ( precategory-Category D) ( F) hom-anafunctor-Category : (X Y : obj-Category C) (U : obj-Category D) (u : object-anafunctor-Category X U) (V : obj-Category D) (v : object-anafunctor-Category Y V) → hom-Category C X Y → hom-Category D U V hom-anafunctor-Category = hom-anafunctor-Precategory ( precategory-Category C) ( precategory-Category D) ( F)
Properties
Any functor between categories induces an anafunctor
module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) where anafunctor-functor-Category : functor-Category C D → anafunctor-Category l4 C D anafunctor-functor-Category = anafunctor-functor-Precategory ( precategory-Category C) ( precategory-Category D)
The action on objects of an anafunctor between categories
image-object-anafunctor-Category : {l1 l2 l3 l4 l5 : Level} (C : Category l1 l2) (D : Category l3 l4) → anafunctor-Category l5 C D → obj-Category C → UU (l3 ⊔ l5) image-object-anafunctor-Category C D F X = Σ ( obj-Category D) ( λ U → type-trunc-Prop (object-anafunctor-Category C D F X U))
Recent changes
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).