Simple undirected graphs
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-03-18.
Last modified on 2025-10-31.
module graph-theory.simple-undirected-graphs where
Imports
open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.negation open import foundation.propositions open import foundation.universe-levels open import foundation.unordered-pairs open import graph-theory.undirected-graphs open import univalent-combinatorics.finite-types
Idea
An undirected graph is said to be simple¶ if it only contains edges between distinct points, and there is at most one edge between any two vertices.
Definition
module _ {l1 l2 : Level} (G : Undirected-Graph l1 l2) where is-simple-Undirected-Graph-Prop : Prop (lsuc lzero ⊔ l1 ⊔ l2) is-simple-Undirected-Graph-Prop = product-Prop ( Π-Prop ( unordered-pair-vertices-Undirected-Graph G) ( λ p → function-Prop ( edge-Undirected-Graph G p) ( is-emb-Prop ( element-unordered-pair-vertices-Undirected-Graph G p)))) ( Π-Prop ( unordered-pair-vertices-Undirected-Graph G) ( λ p → is-prop-Prop (edge-Undirected-Graph G p))) is-simple-Undirected-Graph : UU (lsuc lzero ⊔ l1 ⊔ l2) is-simple-Undirected-Graph = type-Prop is-simple-Undirected-Graph-Prop is-prop-is-simple-Undirected-Graph : is-prop is-simple-Undirected-Graph is-prop-is-simple-Undirected-Graph = is-prop-type-Prop is-simple-Undirected-Graph-Prop Simple-Undirected-Graph : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Simple-Undirected-Graph l1 l2 = Σ ( UU l1) ( λ V → Σ ( unordered-pair V → Prop l2) ( λ E → (x : V) → ¬ ( type-Prop ( E (pair (Fin-Type-With-Cardinality-ℕ 2) (λ y → x))))))
External links
- Simple graph at Wikidata
- Graph at Lab
- Graph (discrete mathematics) at Wikipedia
- Simple graph on Wikidata
- Simple graph at Wolfram MathWorld
Recent changes
- 2025-10-31. Fredrik Bakke. chore: Concepts in graphs (#1646).
- 2025-02-14. Fredrik Bakke. Rename
UU-FintoType-With-Cardinality-ℕ(#1316). - 2024-10-16. Fredrik Bakke. Some links in elementary number theory (#1199).
- 2024-02-06. Fredrik Bakke. Rename
(co)prodto(co)product(#1017). - 2023-11-09. Fredrik Bakke. Typeset
nlabas$n$Lab(#911).