Maps between metric spaces
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-01.
Last modified on 2026-01-01.
module metric-spaces.maps-metric-spaces where
Imports
open import foundation.constant-maps open import foundation.dependent-pair-types open import foundation.function-types open import foundation.sets open import foundation.universe-levels open import metric-spaces.metric-spaces
Idea
Maps¶ between metric spaces are functions between their carrier types.
Definitions
The set of maps between metric spaces
module _ {lx lx' ly ly' : Level} (X : Metric-Space lx lx') (Y : Metric-Space ly ly') where map-set-Metric-Space : Set (lx ⊔ ly) map-set-Metric-Space = hom-set-Set (set-Metric-Space X) (set-Metric-Space Y) map-Metric-Space : UU (lx ⊔ ly) map-Metric-Space = type-Metric-Space X → type-Metric-Space Y
The identity map on a metric space
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where id-map-Metric-Space : map-Metric-Space M M id-map-Metric-Space = id
Constant maps between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (b : type-Metric-Space B) where const-map-Metric-Space : map-Metric-Space A B const-map-Metric-Space = const (type-Metric-Space A) b
Recent changes
- 2026-01-01. Louis Wasserman and Fredrik Bakke. Use map terminology consistently in metric spaces (#1778).