Functoriality of the sharp modality
Content created by Fredrik Bakke.
Created on 2024-09-06.
Last modified on 2024-09-06.
{-# OPTIONS --cohesion --flat-split #-} module modal-type-theory.functoriality-sharp-modality where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.locally-small-types open import foundation.universe-levels open import modal-type-theory.sharp-modality open import orthogonal-factorization-systems.locally-small-modal-operators open import orthogonal-factorization-systems.modal-induction open import orthogonal-factorization-systems.modal-subuniverse-induction
Idea
The sharp modality ♯
is functorial.
Given a map f : A → B
, there is a
unique map ♯ f : ♯ A → ♯ B
that fits
into a natural square
f
X ------> Y
| |
| |
v v
♯ X ----> ♯ Y.
♯ f
This construction preserves composition, identifications, homotopies, and equivalences.
Definitions
The sharp modality’s action on maps
action-sharp-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → (♯ A → ♯ B) action-sharp-map f = rec-sharp (unit-sharp ∘ f)
Recent changes
- 2024-09-06. Fredrik Bakke. Basic properties of the flat modality (#1078).