Commuting triangles of morphisms in precategories
Content created by Egbert Rijke, Fernando Chu and Fredrik Bakke.
Created on 2024-08-29.
Last modified on 2024-08-29.
module category-theory.commuting-triangles-of-morphisms-in-precategories where
Imports
open import category-theory.commuting-triangles-of-morphisms-in-set-magmoids open import category-theory.precategories open import foundation.identity-types open import foundation.universe-levels
Idea
A triangle of morphisms
top
x ----> y
\ /
left \ / right
∨ ∨
z
in a precategory C
is said to commute
if there is an identification between:
left = right ∘ top.
Such a identification is called the coherence¶ of the commuting triangle.
Definitions
coherence-triangle-hom-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) {x y z : obj-Precategory C} (top : hom-Precategory C x y) (left : hom-Precategory C x z) (right : hom-Precategory C y z) → UU l2 coherence-triangle-hom-Precategory C = coherence-triangle-hom-Set-Magmoid (set-magmoid-Precategory C)
Recent changes
- 2024-08-29. Fernando Chu, Fredrik Bakke and Egbert Rijke. Cones, limits and reduced coslices of precats (#1161).