Postcomposition of extensions of maps

Content created by Fredrik Bakke.

Created on 2025-11-12.
Last modified on 2025-11-12.

module orthogonal-factorization-systems.postcomposition-extensions-maps where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.function-types
open import foundation.functoriality-dependent-function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.functoriality-function-types
open import foundation.monomorphisms
open import foundation.postcomposition-functions
open import foundation.truncated-maps
open import foundation.truncation-levels
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import orthogonal-factorization-systems.extensions-maps

Idea

Given a map i : A → B and a map f : A → X, then we may postcompose any extension α : extension-map i f by a map g : X → Y to obtain an extension of g ∘ f along i, gα : extension-map i (g ∘ f).

Definition

Postcomposition of extensions

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  where

  postcomp-extension-map :
    (i : A  B) (f : A  X) (g : X  Y) 
    extension-map i f  extension-map i (g  f)
  postcomp-extension-map i f g =
    map-Σ (is-extension-of-map i (g  f)) (postcomp B g)  j H  g ·l H)

Properties

Postcomposition of extensions by an equivalence is an equivalence

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  where

  is-equiv-postcomp-extension-map :
    (f : A  B) (i : A  X) (g : X  Y)  is-equiv g 
    is-equiv (postcomp-extension-map f i g)
  is-equiv-postcomp-extension-map f i g G =
    is-equiv-map-Σ
      ( is-extension-of-map f (g  i))
      ( is-equiv-postcomp-is-equiv g G B)
      ( λ j 
        is-equiv-map-Π-is-fiberwise-equiv
          ( λ x  is-emb-is-equiv G (i x) (j (f x))))

  equiv-postcomp-extension-map :
    (f : A  B) (i : A  X) (g : X  Y) 
    extension-map f i  extension-map f (map-equiv g  i)
  equiv-postcomp-extension-map f i (g , G) =
    ( postcomp-extension-map f i g , is-equiv-postcomp-extension-map f i g G)

Postcomposition of extensions by an embedding is an embedding

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  where

  is-emb-postcomp-extension-map :
    (f : A  B) (i : A  X) (g : X  Y)  is-emb g 
    is-emb (postcomp-extension-map f i g)
  is-emb-postcomp-extension-map f i g H =
    is-emb-map-Σ
      ( is-extension-of-map f (g  i))
      ( is-mono-is-emb g H B)
      ( λ j 
        is-emb-is-equiv
          ( is-equiv-map-Π-is-fiberwise-equiv
             x  H (i x) (j (f x)))))

  emb-postcomp-extension-map :
    (f : A  B) (i : A  X) (g : X  Y) 
    extension-map f i  extension-map f (map-emb g  i)
  emb-postcomp-extension-map f i (g , G) =
    postcomp-extension-map f i g , is-emb-postcomp-extension-map f i g G

Postcomposition of extensions by a k-truncated map is k-truncated

module _
  {l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  where

  is-trunc-map-postcomp-extension-map :
    (f : A  B) (i : A  X) (g : X  Y)  is-trunc-map k g 
    is-trunc-map k (postcomp-extension-map f i g)
  is-trunc-map-postcomp-extension-map f i g G =
    is-trunc-map-map-Σ k
      ( is-extension-of-map f (g  i))
      ( is-trunc-map-postcomp-is-trunc-map k g G B)
      ( λ j 
        is-trunc-map-map-Π k
          ( λ a  ap g)
          ( λ a  is-trunc-map-ap-is-trunc-map k g G (i a) (j (f a))))

  trunc-map-postcomp-extension-map :
    (f : A  B) (i : A  X) (g : trunc-map k X Y) 
    trunc-map k (extension-map f i) (extension-map f (map-trunc-map g  i))
  trunc-map-postcomp-extension-map f i (g , G) =
    ( postcomp-extension-map f i g ,
      is-trunc-map-postcomp-extension-map f i g G)

See also

  • In foundation.surjective-maps it is shown that postcomposition of extensions along surjective maps by an embedding is an equivalence.

Recent changes