Postcomposition of extensions of maps
Content created by Fredrik Bakke.
Created on 2025-11-12.
Last modified on 2025-11-12.
module orthogonal-factorization-systems.postcomposition-extensions-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-function-types open import foundation.monomorphisms open import foundation.postcomposition-functions open import foundation.truncated-maps open import foundation.truncation-levels open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import orthogonal-factorization-systems.extensions-maps
Idea
Given a map i : A → B and a map f : A → X, then we may
postcompose¶
any extension
α : extension-map i f by a map g : X → Y to obtain an extension of g ∘ f
along i, gα : extension-map i (g ∘ f).
Definition
Postcomposition of extensions
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} where postcomp-extension-map : (i : A → B) (f : A → X) (g : X → Y) → extension-map i f → extension-map i (g ∘ f) postcomp-extension-map i f g = map-Σ (is-extension-of-map i (g ∘ f)) (postcomp B g) (λ j H → g ·l H)
Properties
Postcomposition of extensions by an equivalence is an equivalence
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} where is-equiv-postcomp-extension-map : (f : A → B) (i : A → X) (g : X → Y) → is-equiv g → is-equiv (postcomp-extension-map f i g) is-equiv-postcomp-extension-map f i g G = is-equiv-map-Σ ( is-extension-of-map f (g ∘ i)) ( is-equiv-postcomp-is-equiv g G B) ( λ j → is-equiv-map-Π-is-fiberwise-equiv ( λ x → is-emb-is-equiv G (i x) (j (f x)))) equiv-postcomp-extension-map : (f : A → B) (i : A → X) (g : X ≃ Y) → extension-map f i ≃ extension-map f (map-equiv g ∘ i) equiv-postcomp-extension-map f i (g , G) = ( postcomp-extension-map f i g , is-equiv-postcomp-extension-map f i g G)
Postcomposition of extensions by an embedding is an embedding
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} where is-emb-postcomp-extension-map : (f : A → B) (i : A → X) (g : X → Y) → is-emb g → is-emb (postcomp-extension-map f i g) is-emb-postcomp-extension-map f i g H = is-emb-map-Σ ( is-extension-of-map f (g ∘ i)) ( is-mono-is-emb g H B) ( λ j → is-emb-is-equiv ( is-equiv-map-Π-is-fiberwise-equiv (λ x → H (i x) (j (f x))))) emb-postcomp-extension-map : (f : A → B) (i : A → X) (g : X ↪ Y) → extension-map f i ↪ extension-map f (map-emb g ∘ i) emb-postcomp-extension-map f i (g , G) = postcomp-extension-map f i g , is-emb-postcomp-extension-map f i g G
Postcomposition of extensions by a k-truncated map is k-truncated
module _ {l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} where is-trunc-map-postcomp-extension-map : (f : A → B) (i : A → X) (g : X → Y) → is-trunc-map k g → is-trunc-map k (postcomp-extension-map f i g) is-trunc-map-postcomp-extension-map f i g G = is-trunc-map-map-Σ k ( is-extension-of-map f (g ∘ i)) ( is-trunc-map-postcomp-is-trunc-map k g G B) ( λ j → is-trunc-map-map-Π k ( λ a → ap g) ( λ a → is-trunc-map-ap-is-trunc-map k g G (i a) (j (f a)))) trunc-map-postcomp-extension-map : (f : A → B) (i : A → X) (g : trunc-map k X Y) → trunc-map k (extension-map f i) (extension-map f (map-trunc-map g ∘ i)) trunc-map-postcomp-extension-map f i (g , G) = ( postcomp-extension-map f i g , is-trunc-map-postcomp-extension-map f i g G)
See also
- In
foundation.surjective-mapsit is shown that postcomposition of extensions along surjective maps by an embedding is an equivalence.
Recent changes
- 2025-11-12. Fredrik Bakke. chore: Rename
extensiontoextension-mapandlifttolift-map(#1706). - 2025-11-12. Fredrik Bakke. Refactor extensions of maps (#1695).