Minkowski multiplication on subsets of a monoid
Content created by Louis Wasserman.
Created on 2025-02-10.
Last modified on 2025-02-10.
module group-theory.minkowski-multiplication-monoids where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.inhabited-subtypes open import foundation.powersets open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.minkowski-multiplication-semigroups open import group-theory.monoids open import group-theory.semigroups open import group-theory.subsets-monoids
Idea
Given two subsets A
and B
of a
monoid M
, the
Minkowski multiplication¶
of A
and B
is the set of elements that can be
formed by multiplying an element of A
and an element of B
. This binary
operation defines a monoid structure on the powerset
of M
.
Definition
module _ {l1 l2 l3 : Level} (M : Monoid l1) (A : subset-Monoid l2 M) (B : subset-Monoid l3 M) where minkowski-mul-Monoid : subset-Monoid (l1 ⊔ l2 ⊔ l3) M minkowski-mul-Monoid = minkowski-mul-Semigroup (semigroup-Monoid M) A B
Properties
Minkowski multiplication on subsets of a monoid is associative
module _ {l1 l2 l3 l4 : Level} (M : Monoid l1) (A : subset-Monoid l2 M) (B : subset-Monoid l3 M) (C : subset-Monoid l4 M) where associative-minkowski-mul-Monoid : minkowski-mul-Monoid M (minkowski-mul-Monoid M A B) C = minkowski-mul-Monoid M A (minkowski-mul-Monoid M B C) associative-minkowski-mul-Monoid = associative-minkowski-mul-Semigroup (semigroup-Monoid M) A B C
Unit laws for Minkowski multiplication on subsets of a monoid
module _ {l1 l2 : Level} (M : Monoid l1) (A : subset-Monoid l2 M) where left-unit-law-minkowski-mul-Monoid : sim-subtype (minkowski-mul-Monoid M (is-unit-Monoid-Prop M) A) A pr1 left-unit-law-minkowski-mul-Monoid a = elim-exists ( A a) ( λ (z , a') (z=1 , a'∈A , a=za') → tr ( is-in-subtype A) ( inv ( equational-reasoning a = mul-Monoid M z a' by a=za' = mul-Monoid M (unit-Monoid M) a' by ap (mul-Monoid' M a') z=1 = a' by left-unit-law-mul-Monoid M a')) ( a'∈A)) pr2 left-unit-law-minkowski-mul-Monoid a a∈A = intro-exists ( unit-Monoid M , a) ( refl , a∈A , inv (left-unit-law-mul-Monoid M a)) right-unit-law-minkowski-mul-Monoid : sim-subtype (minkowski-mul-Monoid M A (is-unit-Monoid-Prop M)) A pr1 right-unit-law-minkowski-mul-Monoid a = elim-exists ( A a) ( λ (a' , z) (a'∈A , z=1 , a=a'z) → tr ( is-in-subtype A) ( inv ( equational-reasoning a = mul-Monoid M a' z by a=a'z = mul-Monoid M a' (unit-Monoid M) by ap (mul-Monoid M a') z=1 = a' by right-unit-law-mul-Monoid M a')) ( a'∈A)) pr2 right-unit-law-minkowski-mul-Monoid a a∈A = intro-exists ( a , unit-Monoid M) ( a∈A , refl , inv (right-unit-law-mul-Monoid M a))
Minkowski multiplication on subsets of a monoid forms a monoid
module _ {l : Level} (M : Monoid l) where is-unital-minkowski-mul-Monoid : is-unital (minkowski-mul-Monoid {l} {l} {l} M) pr1 is-unital-minkowski-mul-Monoid = is-unit-Monoid-Prop M pr1 (pr2 is-unital-minkowski-mul-Monoid) A = antisymmetric-sim-subtype ( minkowski-mul-Monoid M (is-unit-Monoid-Prop M) A) ( A) ( left-unit-law-minkowski-mul-Monoid M A) pr2 (pr2 is-unital-minkowski-mul-Monoid) A = antisymmetric-sim-subtype ( minkowski-mul-Monoid M A (is-unit-Monoid-Prop M)) ( A) ( right-unit-law-minkowski-mul-Monoid M A) monoid-minkowski-mul-Monoid : Monoid (lsuc l) pr1 monoid-minkowski-mul-Monoid = semigroup-minkowski-mul-Semigroup (semigroup-Monoid M) pr2 monoid-minkowski-mul-Monoid = is-unital-minkowski-mul-Monoid
The Minkowski multiplication of two inhabited subsets of a monoid is inhabited
module _ {l1 : Level} (M : Monoid l1) where minkowski-mul-inhabited-is-inhabited-Monoid : {l2 l3 : Level} → (A : subset-Monoid l2 M) → (B : subset-Monoid l3 M) → is-inhabited-subtype A → is-inhabited-subtype B → is-inhabited-subtype (minkowski-mul-Monoid M A B) minkowski-mul-inhabited-is-inhabited-Monoid = minkowski-mul-inhabited-is-inhabited-Semigroup (semigroup-Monoid M)
Containment of subsets is preserved by Minkowski multiplication
module _ {l1 l2 l3 l4 : Level} (M : Monoid l1) (B : subset-Monoid l2 M) (A : subset-Monoid l3 M) (A' : subset-Monoid l4 M) where preserves-leq-left-minkowski-mul-Monoid : A ⊆ A' → minkowski-mul-Monoid M A B ⊆ minkowski-mul-Monoid M A' B preserves-leq-left-minkowski-mul-Monoid = preserves-leq-left-minkowski-mul-Semigroup (semigroup-Monoid M) B A A' preserves-leq-right-minkowski-mul-Monoid : A ⊆ A' → minkowski-mul-Monoid M B A ⊆ minkowski-mul-Monoid M B A' preserves-leq-right-minkowski-mul-Monoid = preserves-leq-right-minkowski-mul-Semigroup (semigroup-Monoid M) B A A'
Similarity of subsets is preserved by Minkowski multiplication
module _ {l1 l2 l3 l4 : Level} (M : Monoid l1) (B : subset-Monoid l2 M) (A : subset-Monoid l3 M) (A' : subset-Monoid l4 M) where preserves-sim-left-minkowski-mul-Monoid : sim-subtype A A' → sim-subtype (minkowski-mul-Monoid M A B) (minkowski-mul-Monoid M A' B) preserves-sim-left-minkowski-mul-Monoid = preserves-sim-left-minkowski-mul-Semigroup (semigroup-Monoid M) B A A' preserves-sim-right-minkowski-mul-Monoid : sim-subtype A A' → sim-subtype (minkowski-mul-Monoid M B A) (minkowski-mul-Monoid M B A') preserves-sim-right-minkowski-mul-Monoid = preserves-sim-right-minkowski-mul-Semigroup (semigroup-Monoid M) B A A' module _ {l1 l2 l3 l4 l5 : Level} (M : Monoid l1) (A : subset-Monoid l2 M) (A' : subset-Monoid l3 M) (B : subset-Monoid l4 M) (B' : subset-Monoid l5 M) where preserves-sim-minkowski-mul-Monoid : sim-subtype A A' → sim-subtype B B' → sim-subtype ( minkowski-mul-Monoid M A B) ( minkowski-mul-Monoid M A' B') preserves-sim-minkowski-mul-Monoid = preserves-sim-minkowski-mul-Semigroup (semigroup-Monoid M) A A' B B'
See also
- Minkowski multiplication on semigroups is defined in
group-theory.minkowski-multiplication-semigroups
. - Minkowski multiplication on commutative monoids is defined in
group-theory.minkowski-multiplication-commutative-monoids
.
External links
- Minkowski addition at Mathswitch
- Minkowski addition at Wikipedia
Recent changes
- 2025-02-10. Louis Wasserman. Minkowski multiplication for semigroups, monoids, and commutative monoids (#1309).