∞-connected types
Content created by Fredrik Bakke and Garrett Figueroa.
Created on 2025-07-27.
Last modified on 2025-07-27.
module foundation.infinity-connected-types where
Imports
open import foundation.connected-types open import foundation.dependent-pair-types open import foundation.functoriality-truncation open import foundation.truncation-levels open import foundation.truncations open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.identity-types open import foundation-core.propositions
Idea
A type is said to be
∞-connected¶ if it is
k
-connected for all
truncation levels k
.
Definition
∞-connected types
is-∞-connected-Prop : {l : Level} (X : UU l) → Prop l is-∞-connected-Prop X = Π-Prop 𝕋 (λ k → is-connected-Prop k X) is-∞-connected : {l : Level} (X : UU l) → UU l is-∞-connected X = type-Prop (is-∞-connected-Prop X) is-prop-is-∞-connected : {l : Level} (X : UU l) → is-prop (is-∞-connected X) is-prop-is-∞-connected X = is-prop-type-Prop (is-∞-connected-Prop X)
Contractible types are ∞-connected
is-∞-connected-is-contr : {l : Level} (X : UU l) → is-contr X → is-∞-connected X is-∞-connected-is-contr X is-contr-X k = is-connected-is-contr k is-contr-X
Properties
Being ∞-connected is invariant under equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-∞-connected-is-equiv : (f : A → B) → is-equiv f → is-∞-connected B → is-∞-connected A is-∞-connected-is-equiv f e is-∞-conn-B k = is-contr-is-equiv ( type-trunc k B) ( map-trunc k f) ( is-equiv-map-equiv-trunc k (f , e)) ( is-∞-conn-B k) is-∞-connected-equiv : A ≃ B → is-∞-connected B → is-∞-connected A is-∞-connected-equiv f = is-∞-connected-is-equiv (pr1 f) (pr2 f) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-∞-connected-equiv' : A ≃ B → is-∞-connected A → is-∞-connected B is-∞-connected-equiv' f = is-∞-connected-equiv (inv-equiv f) is-∞-connected-is-equiv' : (f : A → B) → is-equiv f → is-∞-connected A → is-∞-connected B is-∞-connected-is-equiv' f e = is-∞-connected-equiv' (f , e)
Recent changes
- 2025-07-27. Garrett Figueroa and Fredrik Bakke. The Whitehead principle (#1453).