∞-connected types

Content created by Fredrik Bakke and Garrett Figueroa.

Created on 2025-07-27.
Last modified on 2025-07-27.

module foundation.infinity-connected-types where
Imports
open import foundation.connected-types
open import foundation.dependent-pair-types
open import foundation.functoriality-truncation
open import foundation.truncation-levels
open import foundation.truncations
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.identity-types
open import foundation-core.propositions

Idea

A type is said to be ∞-connected if it is k-connected for all truncation levels k .

Definition

∞-connected types

is-∞-connected-Prop : {l : Level} (X : UU l)  Prop l
is-∞-connected-Prop X = Π-Prop 𝕋  k  is-connected-Prop k X)

is-∞-connected : {l : Level} (X : UU l)  UU l
is-∞-connected X = type-Prop (is-∞-connected-Prop X)

is-prop-is-∞-connected : {l : Level} (X : UU l)  is-prop (is-∞-connected X)
is-prop-is-∞-connected X = is-prop-type-Prop (is-∞-connected-Prop X)

Contractible types are ∞-connected

is-∞-connected-is-contr : {l : Level} (X : UU l)  is-contr X  is-∞-connected X
is-∞-connected-is-contr X is-contr-X k = is-connected-is-contr k is-contr-X

Properties

Being ∞-connected is invariant under equivalence

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  is-∞-connected-is-equiv :
    (f : A  B)  is-equiv f  is-∞-connected B  is-∞-connected A
  is-∞-connected-is-equiv f e is-∞-conn-B k =
    is-contr-is-equiv
      ( type-trunc k B)
      ( map-trunc k f)
      ( is-equiv-map-equiv-trunc k (f , e))
      ( is-∞-conn-B k)

  is-∞-connected-equiv :
    A  B  is-∞-connected B  is-∞-connected A
  is-∞-connected-equiv f =
    is-∞-connected-is-equiv (pr1 f) (pr2 f)

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  is-∞-connected-equiv' : A  B  is-∞-connected A  is-∞-connected B
  is-∞-connected-equiv' f = is-∞-connected-equiv (inv-equiv f)

  is-∞-connected-is-equiv' :
    (f : A  B)  is-equiv f  is-∞-connected A  is-∞-connected B
  is-∞-connected-is-equiv' f e = is-∞-connected-equiv' (f , e)

Recent changes