Exponentials of globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.exponentials-globular-types where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import globular-types.globular-maps open import globular-types.globular-types open import globular-types.products-families-of-globular-types
Idea
Consider a family G : I → Globular-Type
of
globular types indexed by a type I
. We
construct a globular type Π_I G
.
Definitions
Exponentials of globular types
module _ {l1 l2 l3 : Level} (A : UU l1) (G : Globular-Type l2 l3) where 0-cell-exponential-Globular-Type : UU (l1 ⊔ l2) 0-cell-exponential-Globular-Type = 0-cell-indexed-product-Globular-Type (λ (x : A) → G) 1-cell-exponential-Globular-Type : (x y : 0-cell-exponential-Globular-Type) → UU (l1 ⊔ l3) 1-cell-exponential-Globular-Type = 1-cell-indexed-product-Globular-Type (λ (x : A) → G) exponential-Globular-Type : Globular-Type (l1 ⊔ l2) (l1 ⊔ l3) exponential-Globular-Type = indexed-product-Globular-Type (λ (x : A) → G)
Double exponentials of globular types
module _ {l1 l2 l3 l4 : Level} (A : UU l1) (B : UU l2) (G : Globular-Type l3 l4) where 0-cell-double-exponential-Globular-Type : UU (l1 ⊔ l2 ⊔ l3) 0-cell-double-exponential-Globular-Type = 0-cell-double-indexed-product-Globular-Type (λ (x : A) (y : B) → G) 1-cell-double-exponential-Globular-Type : (x y : 0-cell-double-exponential-Globular-Type) → UU (l1 ⊔ l2 ⊔ l4) 1-cell-double-exponential-Globular-Type = 1-cell-double-indexed-product-Globular-Type (λ (x : A) (y : B) → G) double-exponential-Globular-Type : Globular-Type (l1 ⊔ l2 ⊔ l3) (l1 ⊔ l2 ⊔ l4) double-exponential-Globular-Type = double-indexed-product-Globular-Type (λ (x : A) (y : B) → G)
Evaluating globular maps into exponentials of globular types
ev-hom-exponential-Globular-Type : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {G : Globular-Type l2 l3} {H : Globular-Type l4 l5} (f : globular-map G (exponential-Globular-Type I H)) → I → globular-map G H ev-hom-exponential-Globular-Type = ev-hom-indexed-product-Globular-Type
Binding families of globular maps
bind-family-globular-maps : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {G : Globular-Type l2 l3} {H : Globular-Type l4 l5} (f : I → globular-map G H) → globular-map G (exponential-Globular-Type I H) bind-family-globular-maps = bind-indexed-family-globular-maps
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).