Inequality of arithmetic and geometric means on the integers
Content created by Louis Wasserman.
Created on 2025-04-25.
Last modified on 2025-04-25.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.inequality-arithmetic-geometric-means-integers where
Imports
open import elementary-number-theory.addition-integers open import elementary-number-theory.difference-integers open import elementary-number-theory.inequality-integers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integers open import elementary-number-theory.nonnegative-integers open import elementary-number-theory.squares-integers open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.transport-along-identifications
Idea
The arithmetic mean-geometric mean inequality¶ states that . We cannot take arbitrary square roots in integers, but we can prove the equivalent inequality that .
Proof
abstract leq-arithmetic-mean-geometric-mean-ℤ : (x y : ℤ) → leq-ℤ (int-ℕ 4 *ℤ (x *ℤ y)) (square-ℤ (x +ℤ y)) leq-arithmetic-mean-geometric-mean-ℤ x y = inv-tr ( is-nonnegative-ℤ) ( equational-reasoning square-ℤ (x +ℤ y) -ℤ (int-ℕ 4 *ℤ (x *ℤ y)) = (square-ℤ x +ℤ (int-ℕ 2 *ℤ (x *ℤ y)) +ℤ square-ℤ y) -ℤ (int-ℕ 4 *ℤ (x *ℤ y)) by ap (_-ℤ int-ℕ 4 *ℤ (x *ℤ y)) (square-add-ℤ x y) = (square-ℤ x +ℤ square-ℤ y +ℤ (int-ℕ 2 *ℤ (x *ℤ y))) +ℤ (neg-ℤ (int-ℕ 4) *ℤ (x *ℤ y)) by ap-add-ℤ ( right-swap-add-ℤ ( square-ℤ x) ( int-ℕ 2 *ℤ (x *ℤ y)) ( square-ℤ y)) ( inv (left-negative-law-mul-ℤ _ _)) = (square-ℤ x +ℤ square-ℤ y) +ℤ (int-ℕ 2 *ℤ (x *ℤ y) +ℤ neg-ℤ (int-ℕ 4) *ℤ (x *ℤ y)) by associative-add-ℤ _ _ _ = (square-ℤ x +ℤ square-ℤ y) +ℤ (neg-ℤ (int-ℕ 2) *ℤ (x *ℤ y)) by ap ( square-ℤ x +ℤ square-ℤ y +ℤ_) ( inv ( right-distributive-mul-add-ℤ ( int-ℕ 2) ( neg-ℤ (int-ℕ 4)) ( x *ℤ y))) = (square-ℤ x +ℤ square-ℤ y) -ℤ (int-ℕ 2 *ℤ (x *ℤ y)) by ap ( square-ℤ x +ℤ square-ℤ y +ℤ_) ( left-negative-law-mul-ℤ _ (x *ℤ y)) = square-ℤ x -ℤ int-ℕ 2 *ℤ (x *ℤ y) +ℤ square-ℤ y by right-swap-add-ℤ _ _ _ = square-ℤ (x -ℤ y) by inv (square-diff-ℤ x y)) ( is-nonnegative-square-ℤ (x -ℤ y))
External links
- Am-gm inequality at Wikidata
Recent changes
- 2025-04-25. Louis Wasserman. Arithmetic-geometric mean inequality on the rational numbers (#1406).