The multiplication operation on the circle
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Victor Blanchi.
Created on 2022-06-02.
Last modified on 2024-06-04.
module synthetic-homotopy-theory.multiplication-circle where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.negated-equality open import foundation.negation open import foundation.transport-along-identifications open import foundation.universe-levels open import structured-types.pointed-homotopies open import structured-types.pointed-maps open import synthetic-homotopy-theory.circle open import synthetic-homotopy-theory.loop-homotopy-circle
Idea
Classically, the circle can be viewed as the subset of the complex numbers of absolute value 1. The absolute value of a product of complex numbers is the product of their absolute values. This implies that when we multiply two complex numbers on the unit circle, the result is a complex number on the unit circle. This multiplicative structure carries over to the homotopy type of the circle.
Definitions
Multiplication on the circle
Mul-Π-𝕊¹ : 𝕊¹ → UU lzero Mul-Π-𝕊¹ x = 𝕊¹-Pointed-Type →∗ (𝕊¹ , x) dependent-identification-Mul-Π-𝕊¹ : {x : 𝕊¹} (p : base-𝕊¹ = x) (q : Mul-Π-𝕊¹ base-𝕊¹) (r : Mul-Π-𝕊¹ x) → (H : pr1 q ~ pr1 r) → pr2 q ∙ p = H base-𝕊¹ ∙ pr2 r → tr Mul-Π-𝕊¹ p q = r dependent-identification-Mul-Π-𝕊¹ refl q r H u = eq-pointed-htpy q r (H , inv right-unit ∙ u) eq-id-id-𝕊¹-Pointed-Type : tr Mul-Π-𝕊¹ loop-𝕊¹ id-pointed-map = id-pointed-map eq-id-id-𝕊¹-Pointed-Type = dependent-identification-Mul-Π-𝕊¹ loop-𝕊¹ ( id-pointed-map) ( id-pointed-map) ( loop-htpy-𝕊¹) ( inv compute-base-loop-htpy-𝕊¹ ∙ inv right-unit) mul-Π-𝕊¹ : Π-𝕊¹ (Mul-Π-𝕊¹) (id-pointed-map) (eq-id-id-𝕊¹-Pointed-Type) mul-Π-𝕊¹ = apply-dependent-universal-property-𝕊¹ ( Mul-Π-𝕊¹) ( id-pointed-map) ( eq-id-id-𝕊¹-Pointed-Type) mul-𝕊¹ : 𝕊¹ → 𝕊¹ → 𝕊¹ mul-𝕊¹ x = pr1 (pr1 mul-Π-𝕊¹ x)
Properties
The unit laws of multiplication on the circle
left-unit-law-mul-𝕊¹ : (x : 𝕊¹) → mul-𝕊¹ base-𝕊¹ x = x left-unit-law-mul-𝕊¹ = htpy-eq (ap pr1 (pr1 (pr2 mul-Π-𝕊¹))) right-unit-law-mul-𝕊¹ : (x : 𝕊¹) → mul-𝕊¹ x base-𝕊¹ = x right-unit-law-mul-𝕊¹ x = pr2 (pr1 mul-Π-𝕊¹ x)
Recent changes
- 2024-06-04. Fredrik Bakke. Quasiidempotence is not a proposition (#1127).
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Refactor synthetic homotopy theory (#654).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-09-10. Fredrik Bakke. Rename
inv-con
andcon-inv
toleft/right-transpose-eq-concat
(#730).