Formal power series in commutative rings
Content created by Louis Wasserman.
Created on 2025-09-11.
Last modified on 2025-09-11.
module commutative-algebra.formal-power-series-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.convolution-sequences-commutative-rings open import commutative-algebra.formal-power-series-commutative-semirings open import commutative-algebra.function-commutative-rings open import commutative-algebra.homomorphisms-commutative-rings open import commutative-algebra.powers-of-elements-commutative-rings open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import lists.sequences open import ring-theory.rings open import ring-theory.semirings
Idea
A
formal power series¶
is a formal sum of the form Σₙ aₙxⁿ
, where n
ranges over the
natural numbers, without any
notion of convergence.
Definition
formal-power-series-Commutative-Ring : {l : Level} (R : Commutative-Ring l) → UU l formal-power-series-Commutative-Ring R = formal-power-series-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) formal-power-series-coefficients-Commutative-Ring : {l : Level} (R : Commutative-Ring l) → sequence (type-Commutative-Ring R) → formal-power-series-Commutative-Ring R formal-power-series-coefficients-Commutative-Ring R = formal-power-series-coefficients-Commutative-Semiring
Properties
The terms in the infinite sum of evaluating a formal power series at an argument
module _ {l : Level} (R : Commutative-Ring l) where term-ev-formal-power-series-Commutative-Ring : (f : formal-power-series-Commutative-Ring R) → (x : type-Commutative-Ring R) → sequence (type-Commutative-Ring R) term-ev-formal-power-series-Commutative-Ring = term-ev-formal-power-series-Commutative-Semiring
The set of formal power series
module _ {l : Level} (R : Commutative-Ring l) where set-formal-power-series-Commutative-Ring : Set l set-formal-power-series-Commutative-Ring = set-formal-power-series-Commutative-Semiring ( commutative-semiring-Commutative-Ring R)
The constant zero formal power series
module _ {l : Level} (R : Commutative-Ring l) where zero-formal-power-series-Commutative-Ring : formal-power-series-Commutative-Ring R zero-formal-power-series-Commutative-Ring = zero-formal-power-series-Commutative-Semiring _
The constant one formal power series
module _ {l : Level} (R : Commutative-Ring l) where one-formal-power-series-Commutative-Ring : formal-power-series-Commutative-Ring R one-formal-power-series-Commutative-Ring = one-formal-power-series-Commutative-Semiring _
The identity formal power series
module _ {l : Level} (R : Commutative-Ring l) where id-formal-power-series-Commutative-Ring : formal-power-series-Commutative-Ring R id-formal-power-series-Commutative-Ring = id-formal-power-series-Commutative-Semiring _
Constant power series
module _ {l : Level} (R : Commutative-Ring l) where constant-formal-power-series-Commutative-Ring : type-Commutative-Ring R → formal-power-series-Commutative-Ring R constant-formal-power-series-Commutative-Ring = constant-formal-power-series-Commutative-Semiring _
The constant zero formal power series is the constant formal power series with value zero
module _ {l : Level} (R : Commutative-Ring l) where constant-zero-formal-power-series-Commutative-Ring : constant-formal-power-series-Commutative-Ring R (zero-Commutative-Ring R) = zero-formal-power-series-Commutative-Ring R constant-zero-formal-power-series-Commutative-Ring = constant-zero-formal-power-series-Commutative-Semiring _
The constant one formal power series is the constant formal power series with value one
module _ {l : Level} (R : Commutative-Ring l) where constant-one-formal-power-series-Commutative-Ring : constant-formal-power-series-Commutative-Ring R (one-Commutative-Ring R) = one-formal-power-series-Commutative-Ring R constant-one-formal-power-series-Commutative-Ring = constant-one-formal-power-series-Commutative-Semiring _
Addition
module _ {l : Level} (R : Commutative-Ring l) where add-formal-power-series-Commutative-Ring : formal-power-series-Commutative-Ring R → formal-power-series-Commutative-Ring R → formal-power-series-Commutative-Ring R add-formal-power-series-Commutative-Ring = add-formal-power-series-Commutative-Semiring
Associativity
module _ {l : Level} (R : Commutative-Ring l) where associative-add-formal-power-series-Commutative-Ring : (x y z : formal-power-series-Commutative-Ring R) → add-formal-power-series-Commutative-Ring R ( add-formal-power-series-Commutative-Ring R x y) ( z) = add-formal-power-series-Commutative-Ring R ( x) ( add-formal-power-series-Commutative-Ring R y z) associative-add-formal-power-series-Commutative-Ring = associative-add-formal-power-series-Commutative-Semiring
Commutativity
module _ {l : Level} (R : Commutative-Ring l) where commutative-add-formal-power-series-Commutative-Ring : (x y : formal-power-series-Commutative-Ring R) → add-formal-power-series-Commutative-Ring R x y = add-formal-power-series-Commutative-Ring R y x commutative-add-formal-power-series-Commutative-Ring = commutative-add-formal-power-series-Commutative-Semiring
Unit laws
module _ {l : Level} (R : Commutative-Ring l) where left-unit-law-add-formal-power-series-Commutative-Ring : (x : formal-power-series-Commutative-Ring R) → add-formal-power-series-Commutative-Ring R ( zero-formal-power-series-Commutative-Ring R) ( x) = x left-unit-law-add-formal-power-series-Commutative-Ring = left-unit-law-add-formal-power-series-Commutative-Semiring right-unit-law-add-formal-power-series-Commutative-Ring : (x : formal-power-series-Commutative-Ring R) → add-formal-power-series-Commutative-Ring R ( x) ( zero-formal-power-series-Commutative-Ring R) = x right-unit-law-add-formal-power-series-Commutative-Ring = right-unit-law-add-formal-power-series-Commutative-Semiring
Negation
module _ {l : Level} (R : Commutative-Ring l) where neg-formal-power-series-Commutative-Ring : formal-power-series-Commutative-Ring R → formal-power-series-Commutative-Ring R neg-formal-power-series-Commutative-Ring x = formal-power-series-coefficients-Commutative-Semiring ( λ n → neg-Commutative-Ring R ( coefficient-formal-power-series-Commutative-Semiring x n))
Inverse laws for addition
module _ {l : Level} (R : Commutative-Ring l) where abstract left-inverse-law-add-formal-power-series-Commutative-Ring : (x : formal-power-series-Commutative-Ring R) → add-formal-power-series-Commutative-Ring R ( neg-formal-power-series-Commutative-Ring R x) ( x) = zero-formal-power-series-Commutative-Ring R left-inverse-law-add-formal-power-series-Commutative-Ring x = ap ( formal-power-series-coefficients-Commutative-Ring R) ( eq-htpy (λ n → left-inverse-law-add-Commutative-Ring R _)) right-inverse-law-add-formal-power-series-Commutative-Ring : (x : formal-power-series-Commutative-Ring R) → add-formal-power-series-Commutative-Ring R ( x) ( neg-formal-power-series-Commutative-Ring R x) = zero-formal-power-series-Commutative-Ring R right-inverse-law-add-formal-power-series-Commutative-Ring x = ap ( formal-power-series-coefficients-Commutative-Ring R) ( eq-htpy (λ n → right-inverse-law-add-Commutative-Ring R _))
Multiplication
module _ {l : Level} (R : Commutative-Ring l) where mul-formal-power-series-Commutative-Ring : formal-power-series-Commutative-Ring R → formal-power-series-Commutative-Ring R → formal-power-series-Commutative-Ring R mul-formal-power-series-Commutative-Ring = mul-formal-power-series-Commutative-Semiring
Associativity
module _ {l : Level} (R : Commutative-Ring l) where associative-mul-formal-power-series-Commutative-Ring : (x y z : formal-power-series-Commutative-Ring R) → mul-formal-power-series-Commutative-Ring R ( mul-formal-power-series-Commutative-Ring R x y) ( z) = mul-formal-power-series-Commutative-Ring R ( x) ( mul-formal-power-series-Commutative-Ring R y z) associative-mul-formal-power-series-Commutative-Ring = associative-mul-formal-power-series-Commutative-Semiring
Commutativity
module _ {l : Level} (R : Commutative-Ring l) where commutative-mul-formal-power-series-Commutative-Ring : (x y : formal-power-series-Commutative-Ring R) → mul-formal-power-series-Commutative-Ring R x y = mul-formal-power-series-Commutative-Ring R y x commutative-mul-formal-power-series-Commutative-Ring = commutative-mul-formal-power-series-Commutative-Semiring
Unit laws
module _ {l : Level} (R : Commutative-Ring l) where left-unit-law-mul-formal-power-series-Commutative-Ring : (x : formal-power-series-Commutative-Ring R) → mul-formal-power-series-Commutative-Ring R ( one-formal-power-series-Commutative-Ring R) ( x) = x left-unit-law-mul-formal-power-series-Commutative-Ring = left-unit-law-mul-formal-power-series-Commutative-Semiring right-unit-law-mul-formal-power-series-Commutative-Ring : (x : formal-power-series-Commutative-Ring R) → mul-formal-power-series-Commutative-Ring R ( x) ( one-formal-power-series-Commutative-Ring R) = x right-unit-law-mul-formal-power-series-Commutative-Ring = right-unit-law-mul-formal-power-series-Commutative-Semiring
Zero laws
module _ {l : Level} (R : Commutative-Ring l) where left-zero-law-mul-formal-power-series-Commutative-Ring : (x : formal-power-series-Commutative-Ring R) → mul-formal-power-series-Commutative-Ring R ( zero-formal-power-series-Commutative-Ring R) ( x) = zero-formal-power-series-Commutative-Ring R left-zero-law-mul-formal-power-series-Commutative-Ring = left-zero-law-mul-formal-power-series-Commutative-Semiring right-zero-law-mul-formal-power-series-Commutative-Ring : (x : formal-power-series-Commutative-Ring R) → mul-formal-power-series-Commutative-Ring R ( x) ( zero-formal-power-series-Commutative-Ring R) = zero-formal-power-series-Commutative-Ring R right-zero-law-mul-formal-power-series-Commutative-Ring = right-zero-law-mul-formal-power-series-Commutative-Semiring
Distributive laws
module _ {l : Level} (R : Commutative-Ring l) where left-distributive-mul-add-formal-power-series-Commutative-Ring : (x y z : formal-power-series-Commutative-Ring R) → mul-formal-power-series-Commutative-Ring R ( x) ( add-formal-power-series-Commutative-Ring R y z) = add-formal-power-series-Commutative-Ring R ( mul-formal-power-series-Commutative-Ring R x y) ( mul-formal-power-series-Commutative-Ring R x z) left-distributive-mul-add-formal-power-series-Commutative-Ring = left-distributive-mul-add-formal-power-series-Commutative-Semiring right-distributive-mul-add-formal-power-series-Commutative-Ring : (x y z : formal-power-series-Commutative-Ring R) → mul-formal-power-series-Commutative-Ring R ( add-formal-power-series-Commutative-Ring R x y) ( z) = add-formal-power-series-Commutative-Ring R ( mul-formal-power-series-Commutative-Ring R x z) ( mul-formal-power-series-Commutative-Ring R y z) right-distributive-mul-add-formal-power-series-Commutative-Ring = right-distributive-mul-add-formal-power-series-Commutative-Semiring
The commutative ring of formal power series
module _ {l : Level} (R : Commutative-Ring l) where additive-semigroup-formal-power-series-Commutative-Ring : Semigroup l additive-semigroup-formal-power-series-Commutative-Ring = additive-semigroup-formal-power-series-Commutative-Semiring ( commutative-semiring-Commutative-Ring R) additive-group-formal-power-series-Commutative-Ring : Group l additive-group-formal-power-series-Commutative-Ring = ( additive-semigroup-formal-power-series-Commutative-Ring , ( zero-formal-power-series-Commutative-Ring R , left-unit-law-add-formal-power-series-Commutative-Ring R , right-unit-law-add-formal-power-series-Commutative-Ring R) , neg-formal-power-series-Commutative-Ring R , left-inverse-law-add-formal-power-series-Commutative-Ring R , right-inverse-law-add-formal-power-series-Commutative-Ring R) additive-ab-formal-power-series-Commutative-Ring : Ab l additive-ab-formal-power-series-Commutative-Ring = ( additive-group-formal-power-series-Commutative-Ring , commutative-add-formal-power-series-Commutative-Ring R) ring-formal-power-series-Commutative-Ring : Ring l ring-formal-power-series-Commutative-Ring = ( additive-ab-formal-power-series-Commutative-Ring , ( mul-formal-power-series-Commutative-Ring R , associative-mul-formal-power-series-Commutative-Ring R) , ( one-formal-power-series-Commutative-Ring R , left-unit-law-mul-formal-power-series-Commutative-Ring R , right-unit-law-mul-formal-power-series-Commutative-Ring R) , left-distributive-mul-add-formal-power-series-Commutative-Ring R , right-distributive-mul-add-formal-power-series-Commutative-Ring R) commutative-ring-formal-power-series-Commutative-Ring : Commutative-Ring l commutative-ring-formal-power-series-Commutative-Ring = ( ring-formal-power-series-Commutative-Ring , commutative-mul-formal-power-series-Commutative-Ring R)
The constant power series operation is a commutative ring homomorphism
module _ {l : Level} (R : Commutative-Ring l) where preserves-mul-constant-formal-power-series-Commutative-Ring : {x y : type-Commutative-Ring R} → constant-formal-power-series-Commutative-Ring R ( mul-Commutative-Ring R x y) = mul-formal-power-series-Commutative-Ring R ( constant-formal-power-series-Commutative-Ring R x) ( constant-formal-power-series-Commutative-Ring R y) preserves-mul-constant-formal-power-series-Commutative-Ring = preserves-mul-constant-formal-power-series-Commutative-Semiring _ preserves-add-constant-formal-power-series-Commutative-Ring : {x y : type-Commutative-Ring R} → constant-formal-power-series-Commutative-Ring R ( add-Commutative-Ring R x y) = add-formal-power-series-Commutative-Ring R ( constant-formal-power-series-Commutative-Ring R x) ( constant-formal-power-series-Commutative-Ring R y) preserves-add-constant-formal-power-series-Commutative-Ring = preserves-add-constant-formal-power-series-Commutative-Semiring _ hom-constant-formal-power-series-Commutative-Ring : hom-Commutative-Ring ( R) ( commutative-ring-formal-power-series-Commutative-Ring R) hom-constant-formal-power-series-Commutative-Ring = ( ( constant-formal-power-series-Commutative-Ring R , preserves-add-constant-formal-power-series-Commutative-Ring) , preserves-mul-constant-formal-power-series-Commutative-Ring , constant-one-formal-power-series-Commutative-Ring R)
External links
- Formal power series at Wikidata
Recent changes
- 2025-09-11. Louis Wasserman. Formal power series and polynomials in commutative rings (#1541).