Raising the universe level of complex numbers
Content created by Louis Wasserman.
Created on 2025-11-11.
Last modified on 2025-11-11.
module complex-numbers.raising-universe-levels-complex-numbers where
Imports
open import complex-numbers.complex-numbers open import complex-numbers.similarity-complex-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import real-numbers.raising-universe-levels-real-numbers
Idea
For every universe 𝒰 there is a type of
complex numbers ℂ relative to 𝒰,
ℂ 𝒰. Given a larger universe 𝒱, then we may
raise¶ a complex
number z from the universe 𝒰 to a
similar complex number in the
universe 𝒱.
Definition
raise-ℂ : {l1 : Level} (l2 : Level) → ℂ l1 → ℂ (l1 ⊔ l2) raise-ℂ l (a +iℂ b) = raise-ℝ l a +iℂ raise-ℝ l b
Properties
Complex numbers are similar to their raised-universe equivalents
abstract sim-raise-ℂ : {l1 : Level} (l2 : Level) (z : ℂ l1) → sim-ℂ z (raise-ℂ l2 z) sim-raise-ℂ l (a +iℂ b) = ( sim-raise-ℝ l a , sim-raise-ℝ l b)
Recent changes
- 2025-11-11. Louis Wasserman. The large ring of complex numbers (#1688).