Raising the universe level of complex numbers
Content created by Louis Wasserman.
Created on 2025-11-11.
Last modified on 2025-11-26.
module complex-numbers.raising-universe-levels-complex-numbers where
Imports
open import complex-numbers.complex-numbers open import complex-numbers.similarity-complex-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.negated-equality open import foundation.universe-levels open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers
Idea
For every universe 𝒰 there is a type of
complex numbers ℂ relative to 𝒰,
ℂ 𝒰. Given a larger universe 𝒱, then we may
raise¶ a complex
number z from the universe 𝒰 to a
similar complex number in the
universe 𝒱.
Definition
raise-ℂ : {l1 : Level} (l2 : Level) → ℂ l1 → ℂ (l1 ⊔ l2) raise-ℂ l (a +iℂ b) = raise-ℝ l a +iℂ raise-ℝ l b
Properties
Complex numbers are similar to their raised-universe equivalents
abstract sim-raise-ℂ : {l1 : Level} (l2 : Level) (z : ℂ l1) → sim-ℂ z (raise-ℂ l2 z) sim-raise-ℂ l (a +iℂ b) = ( sim-raise-ℝ l a , sim-raise-ℝ l b) abstract sim-raise-ℂ' : {l1 : Level} (l2 : Level) (z : ℂ l1) → sim-ℂ (raise-ℂ l2 z) z sim-raise-ℂ' l2 z = symmetric-sim-ℂ (sim-raise-ℂ l2 z)
raise-ℂ l zero-ℂ ≠ raise-ℂ l one-ℂ
abstract neq-raise-zero-one-ℂ : (l : Level) → raise-ℂ l zero-ℂ ≠ raise-ℂ l one-ℂ neq-raise-zero-one-ℂ l 0=1ℂ = neq-raise-zero-one-ℝ l (ap re-ℂ 0=1ℂ)
Recent changes
- 2025-11-26. Louis Wasserman. Complex vector spaces (#1692).
- 2025-11-11. Louis Wasserman. The large ring of complex numbers (#1688).